Setting the Standard

www.mocaglobal.org
CMMA MOCA standard meeting Yangzhou

March 31st 2016
Failed project
赔偿项目
问题板Problems
问题板 Problems
问题板Problems
问题板Problems

协作&共赢
TEST RESULTS:

Table 3: Individual Test Results – Negative Direction

<table>
<thead>
<tr>
<th>Sample Number and Load Direction</th>
<th>Ultimate Load Resistance</th>
<th>Mode of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1: Negative Direction</td>
<td>3.12 kPa (65 psf)</td>
<td>Fastener pull through followed by panel cracking and breaking away from nine screw locations. Two of which were edge condition failures.</td>
</tr>
<tr>
<td>Sample 3: Negative Direction</td>
<td>2.40 kPa (50 psf)</td>
<td>Fastener pull through followed by panel cracking and breaking away from six screw locations. One of which was an edge condition failure.</td>
</tr>
<tr>
<td>Sample 4: Negative Direction</td>
<td>>3.6 kPa (75 psf)</td>
<td>Panel did not fail.</td>
</tr>
<tr>
<td>Sample 5: Negative Direction</td>
<td>1.92 kPa (40 psf)</td>
<td>Fastener pull through followed by panel cracking and breaking away from eight screw locations. None of which were edge condition failures. This sample was #4 with the screw heads torqued further. See Assembly 5 detailed description.</td>
</tr>
<tr>
<td>Sample 6: Negative Direction</td>
<td>2.16 kPa (45 psf)</td>
<td>Fastener pull through followed by panel cracking and breaking away from fourteen screw locations. None of which were edge condition failures.</td>
</tr>
</tbody>
</table>

Average Ultimate Load Resistance: 2.82 kPa (58.75 psf)
Coefficient of Variation: 23.4%

Table 4: Individual Test Results – Positive Direction

<table>
<thead>
<tr>
<th>Sample Number and Load Direction</th>
<th>Ultimate Load Resistance</th>
<th>Mode of Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 2: Positive Direction</td>
<td>3.60 kPa (75 psf)</td>
<td>Failure was not achieved</td>
</tr>
</tbody>
</table>
Assessing the carbon sequestration potential of magnesium oxychloride cement boards

This study documented the fate of fixed CO₂ within magnesium oxychloride (MOC) boards, fingerprinted the source of CO₂ to confirm its value as a greenhouse gas offset, determined the passive rate of CO₂ sequestration within boards under ambient factory conditions, and determined the potential for accelerating carbonation of MOC board using elevated concentrations of CO₂.

Ian Power* and Greg Dipple

Department of Earth, Ocean and Atmospheric Sciences
The University of British Columbia, *ipower@eos.ubc.ca
MOCA Standard

- Based on Chinese standards, AC386
- To become ASTM standard
- Includes Quality Assurance Manual
- Best Practices guide
- Standards meeting New Orleans April 19th

www.mocaglobal.org
1. Basic boards
2. Non-combustible rating
3. Structural
4. Wet and exterior use
5. Fire Separations
MOCA label &WH mark
"What I can say is that any technical guide for an MgOCl or magnesium oxysulfate product will require regular and thorough QC testing in terms of both mechanical performance and chemical composition". Dr Jon Makar. NRC Canada
Setting the Standard

www.mocaglobal.org
www.magogbp.com