APA

APA Report T2011P-43

Durability of Structural Insulated Panels (SIPs) Cyclic Shear Wall Testing for The Structural Insulated Panel Association Gig Harbor, Washington

©2011 APA - The Engineered Wood Association

by Thomas D. Skaggs, Ph.D., P.E. Technical Services Division

August 19, 2011

REPRESENTING THE ENGINEERED WOOD INDUSTRY

Durability of Structural Insulated Panels (SIPs)Cyclic Shear Wall Testing for The Structural Insulated Panel Association Gig Harbor, Washington

SUMMARY

The purpose of this report is to provide cyclic test data on walls subjected to one of three moisture states: 1) dry condition (as received), 2) wall assemblies subjected to ASTM E72 wetting cycle and permitted to dry for two weeks at laboratory conditions and 3) wall assemblies subjected to ASTM E72 wetting cycles and permitted to dry for four weeks at laboratory conditions. The purpose of this testing is to quantify the durability of SIPs after a standard moisture cycle, and then permitting them to dry for a specific period, to simulate in-field performance.

The cyclic testing was conducted following ASTM E 2126 Method C, CUREE Basic Loading Protocol. The reference deformation, Δ , was set at 2.4 inches. The term α was 0.5. Displacement cycles were added such that the maximum displacement was +/- 4.8 inches.

Based on the testing reported herein, the SIPs performance was insensitive to the ASTM E72 wetting-redry moisture cycles. There was no distinguishable difference between the cyclic performance after a two-week and a four-week redry.

Reported by:

THOMAS D. SKAGGS, Ph.D., P.E. Manager, Product Evaluation Technical Services Division

Reviewed by:

BORJEN YEA, Ph.D., P.E. Director Technical Services Division

This report shall not be reproduced except in full and only with the written approval of *APA* - *The Engineered Wood Association* laboratory management.

LABORATORY ACCREDITATIONS AND LISTINGS HELD BY APA

APA - The Engineered Wood Association is committed to providing its clients with high-quality service and information through documented test procedures and thorough, accurate collection of data. As a part of that commitment, a Quality Program has been established by APA based on the international document ISO/IEC Guide 17025: *General Requirements for the Competence of Testing and Calibration Laboratories*. The APA Quality Program follows the Accreditation Criteria and Requirements for Testing Organizations (CAN-P-4) and National Accreditation Program for Testing Organizations, Standards Council of Canada (SCC). APA is accredited or listed as a testing laboratory for specific scopes by the following agencies (certification agency accreditations also shown where applicable):

- International Accreditation Service (IAS), as an accredited Testing Laboratory (TL-215)
- International Accreditation Service (IAS), as an accredited Inspection Agency (AA-649)
- Standards Council of Canada (SCC), as an accredited Testing Organization (No. 89)
- Standards Council of Canada (SCC), as an accredited Certification Body
- Japanese Ministry of Agriculture, Forestry, and Fisheries (MAFF), as a Registered Overseas Certification Body (ROCB) since June 21, 2006
- The Florida Department of Committee Affairs, as a Product Certification Agency (CER2512)
- The Florida Department of Committee Affairs, as a Product Testing Laboratory (TST2513)
- The Florida Department of Committee Affairs, as a Product Quality Assurance Entity (QUA2521)
- The Florida Department of Committee Affairs, as a Product Validation Entity (VAL3120)
- City of Los Angeles, as a Compliance Assurance and Testing Agency (No. 22192)
- Miami-Dade County, as a Testing Laboratory (Certification No. 10-0817.11)

This report contains data generated through testing of engineered wood products according to various test methods. Many accepted test methods conducted by APA are accredited or listed by organizations listed above. A list of methods is available upon request. Any test data in this report that is derived from test methods, which deviate from accepted procedure are noted. Accreditation or listing does not constitute endorsement of this report by the accrediting or listing agency or government.

The precision and bias of the test methods given in this report are being established.

Table of Contents

1.	INTF	RODUCTION	. 4
	1.1	MATERIAL DESCRIPTION	4
	1.2	Framing	.4
	1.3	Fasteners	.4
	1.4	Hold Downs	.5
	1.5	SIPs	.5
2.	TES	T METHODS	. 5
	2.1	Instrumentation	5
	2.2	Cyclic Protocol	. 5
	2.3	Boundary Conditions	. 5
	2.4	SIP Cyclic Test Specimen Description	. 5
	2.5	ASTM E72 Wetting Cycle	. 6
3.		ULTS AND DISCUSSION	
4.	ANA	LYSIS TO DEMONSTRATE EQUIVALENT CYCLIC PROPERTIES	.7
5.	CON	CLUSION	. 8
6.	REF	ERENCES	. 9
7.	APP	ENDICES	10

1. INTRODUCTION

The purpose of this report is to provide cyclic test data on walls subjected to one of three moisture states: 1) dry condition (as received), 2) wall assemblies subjected to ASTM E72 wetting cycle and permitted to dry for two weeks at laboratory conditions and 3) wall assemblies subjected to ASTM E72 wetting cycles and permitted to dry for four weeks at laboratory conditions. The purpose of this testing is to quantify the durability of SIPs after a standard moisture cycle, and then permitting them to dry for a specific period, to simulate in-field performance.

The cyclic testing was conducted following ASTM E 2126 Method C, CUREE Basic Loading Protocol. The reference deformation, Δ , was set at 2.4 inches. The term α was 0.5. Displacement cycles were added such that the maximum displacement was +/- 4.8 inches.

1.1 MATERIAL DESCRIPTION

The cyclic testing summarized in this report examined the performance of one SIPs assembly subjected to an ASTM E72 wetting cycle (Further described in Section 3.5 of this report). The walls were tested in three states, 1) dry (as received), 2) two week redry after the ASTM E72 wetting cycle, and 3) four week redry after the ASTM E72 wetting cycle. The purpose of these tests was to evaluate durability of SIPs when subjected to a wetting cycle, and permitted to dry for a specific period of time. Additional construction details are provided below.

1.2 Framing

The framing lumber for all walls tested was either 2x6 or 2x4 No. 2 & Btr SPF. The framing details can be found in Appendix A. The walls were framed with double 2x4 top plates, with a 2x6 top "cap". Both of the 2x4s were recessed in the SIP and the 2x6 plate was outside of the sheathing, to yield an overall wall height of 8' 3". The two top plates were stitch-nailed together with two rows of 10d common nails $(0.148" \times 3")$ spaced at 8" oc. The end posts were double 2x4s, stitched-nailed identically to the top plates. The single bottom plate, recessed 2x4, was also capped with a 2x6. The two SIPs were attached together with a 7/16" x 3"-wide OSB block spline. The target design value for this assembly was 315 plf, based on the underlying assumption of the SIPs section of the 2009 and 2012 International Residential Code (IRC). The IRC specifies 8d common nails $(0.131" \times 2-1/2")$ with edge nail spacing of 6" oc.

1.3 Fasteners

Three types of nails, representative of typical nails, were used for the tests. The framing nails were full round head strip collated 16d common nails $(0.162" \times 3-1/2")$. The OSB sheathing nails were full round head strip collated 8d common $(0.131" \times 2-1/2")$. The stitch nailing for the double stud vertical members were 10d common nails $(0.148" \times 3")$. In general, the framing nailing followed Table 2304.9.1 of the International Building Code (ICC, 2009 and 2012). Each panel was marked for specific nail location and edge distance.

The stud to top and bottom plate connection was achieved with 2-16d common $(0.162" \times 3-1/2")$ end nails. The sheathing nails, 8d common $(0.131" \times 2-1/2")$, were spaced at 6" on center around the panel perimeter (both sides of the SIPs). The minimum edge distance of the nail placement was 3/8". The double 2x4 end studs and top and bottom plates were stitch-nailed with two rows of 10d common $(0.148" \times 3")$ spaced at 8" oc.

1.4 Hold Downs

The hold-down devices were placed on the outside of the SIP walls (See Appendix B, and Figures E2 and E3 in Appendix E), and were positioned to bear on the 2x6 bottom plate cap. The hold downs used for all of the walls were Simpson Strong-Tie HDU4 attached with the accompanied 1/4"-diameter SDS wood screws 3" in length.

1.5 SIPs

The OSB facers were 7/16" OSB manufactured by Tolko Industries, Ltd., Meadow Lake, Saskatchewan, Canada and trademarked with the APA N-610 designation. The SIPs were manufactured by Premier Building Systems, Kent, Washington, on behalf of the Structural Insulated Panel Association, Gig Harbor, Washington. The SIPs were sampled by representatives of Premier Building Systems. The SIPs bore an NTA trademark, and the panels were presumed to be consistent with routine production. Each 4' x 8' SIP contained 1-1/2"diameter vertical (1) and horizontal (2) electrical chases in the EPS core.

2. TEST METHODS

2.1 Instrumentation

For all wall tests, linear potentiometers (LPs) were placed at strategic locations including top plate deformation, bottom plate slipping as well as both end post uplift/compression. See Appendix B for locations of these devices.

The applied load was measured with a load cell located between the MTS hydraulic actuator and the loading head. The loading was applied via displacement mode at a cyclic rate of 0.5 Hz and data was recorded at 500 Hz. The collected data was sampled and averaged so that 100 data points per cycle were reported.

2.2 Cyclic Protocol

The displacement protocol for these tests followed ASTM E2126, Method C, CUREE Basic Loading Protocol. The reference deformation, Δ , was set at 2.4". The term α was 0.5. Displacement cycles were added such that the maximum displacement was +/- 4.8".

2.3 Boundary Conditions

The OSB sheathing on all walls was restrained with 2x6 SPF top and bottom plates. These plates capped the walls and simulated end-use boundary conditions. To be consistent with ASTM E2126, the anchor bolts (5/8" diameter) were torqued with the nuts no tighter than finger tight plus 1/4 turn. The hold-down bolts were consistently tight for all walls. The thread pitch on all bolts was standard UNC (coarse). The loading beam (Appendix B, and Figures E2, E4, and E5 in Appendix E) was a custom built-up channel from two L3 x 2-1/2 x 3/8 angles, welded toe-to-toe for a net width of 5 inches in width. The resulting bending stiffness El of the loading beam is 121 x 10^6 lbf-in.². The built-up shape was attached with enough 1/4" x 3" lag screws to develop the capacity of the walls.

2.4 SIP Cyclic Test Specimen Description

All SIP wall assemblies were tested in July 2011. Details of the wall construction can be found in Section 2 of this report. There were three replications for the dry SIPs tests, and three replications for the wet-redry specimens.

Of the wet-redry specimens, two were permitted to dry to lab conditions for a period of two weeks, and the remaining wet-redry specimen was permitted to dry to lab conditions for a period of four weeks.

2.5 ASTM E72 Wetting Cycle

The wetting cycle followed Section 15.3 of ASTM E72. In summary, the specimens were suspended in a vertical position that prevented continuous immersion of the bottom edge of the SIP assemblies. Both sides of the specimens were exposed to a water spray near the top and along the length of the specimen. The water was permitted to flow down both surfaces of the specimens. Note that portions of the SIPs facers were removed for double electrical boxes at the mid-height and at the lower height foam electrical chases (See Figure E2) before the wetting cycle. The facers were removed on only one side of the SIP. The specimens were wetted for a period of 6 hours, and then permitted to air dry for a period of 18 hours with laboratory air, with no increase in air movement. This wetting cycle was repeated for two additional cycles. After the wetting cycles, the walls were permitted to air dry at lab conditions, with no additional air movement for two and four weeks.

3. RESULTS AND DISCUSSION

The average panel facer moisture content was 5.1%, 7.4%, 6.6% for the dry, two-week redry and four-week redry, respectively. Clearly the moisture cycle resulted in elevated moisture content of SIP facers as well as the additional two weeks of drying was effective in reducing moisture content. The lumber moisture content (ASTM D4442) and the specific gravity (ASTM D2395) for these wall tests are listed in Appendix B. The average 2x4 moisture content was 11.1% for the specimens tested in the dry condition. The 2x4s from the redried specimens were 11.8% and 12.2% for the two-week and four-week redry, respectively. The average 2x6 moisture content was 11.5%, 12.9%, and 12.7% for the dry, two-week redry and four-week redry, respectively. The average specific gravity of the 2x4s was 0.45, 0.47 and 0.43 for the dry, two-week redry and four-week redry respectively. The 2x6 specific gravity is listed in Appendix B.

The applied load versus the horizontal wall displacement can be found in Appendix C. Each of the hysteretic plots shows a backbone curve, as well as an equivalent energy elastic-plastic (EEEP) curve, as defined by ASTM E2126. In addition to the individual plots, a detailed data analysis per ASTM E2126 is provided in Appendix C.

Table 1 lists a summary of the average cyclic properties for the different SIPs and conventional walls, as well as comparison to established criteria for lateral force resisting systems as presented in ICC ES AC04. A more detailed summary of these data can be found in Appendix D.

Table 1. Average summary statistics for walls tested and analyzed in accordance with ICC ES AC04.

7,004.							
Wall	ASD Design	ASD Design	Ultimate Defl. ⁽²⁾	Peak Load ⁽²⁾		S AC 04 An ection Numb	
Detail	Value ⁽¹⁾ (plf)	Defl. ⁽²⁾ (in.)	(in.)	(plf)	A3.3.2 ⁽³⁾	A3.3.3 ⁽⁴⁾	A3.3.4 ⁽⁵⁾
Dry	315	0.081	2.464	1,220	30.7	0.026	3.87
Wet-Redry (2 weeks)	315	0.111	2.776	1,247	25.1	0.029	3.96
Wet-Redry (4 weeks)	315	0.094	2.605	1,247	27.8	0.027	3.96

⁽¹⁾ See Section 4 of this report for more details on wall construction and rationale for design value.

⁽²⁾ Based on the average of the absolute value of positive and negative cyclic excursion.

⁽³⁾ Ultimate deflection divided by deflection at design value. AC04 Appendix A criteria requires this property to be greater than or equal to 11.

⁽⁴⁾ Minimum post peak displacement. AC04 Appendix A criteria requires this property to be greater than or equal to 0.028H, based on tests following CUREE loading protocol.

⁽⁵⁾ Peak strength divided by design value. AC04 Appendix A criterion for this property requires this property to be between 2.5 and 5.0.

4. ANALYSIS TO DEMONSTRATE EQUIVALENT CYCLIC PROPERTIES

The primary failure mode of the SIPs was the top plate tearing out of the wall toward the end of the displacement cycles (Figure E4 and E5). There was no significant difference in the failure modes associated with the different moisture cycles of the walls.

Based on the cyclic test results summarized in this report, a detailed analysis in accordance with AC04 was conducted. ICC ES AC04 Appendix A was created to provide a methodology for benchmarking SIPs cyclic test data to light frame walls sheathed with wood structural panels, based on established criteria. The criteria was intended to confirm compatibility with a code defined seismic-force resisting system – light-frame walls sheathed with wood structural panels rated for shear resistance (Seismic Force-Resisting System A-13 in accordance with Table 12-2.1 of ASCE 7-05). The walls summarized herein were considered as "Assembly C" in accordance with AC04.

The first criterion was intended to provide similar ductility as light-frame walls sheathed with wood structural panels (Section A3.3.2, requiring ultimate deflection divided by deflection at ASD design value to be greater than or equal to 11). The second criteria is intended to show that the ultimate failure deflection of the walls is similar to light-frame walls sheathed with wood structural panels (Section A3.3.3, requiring minimum post peak displacement of 0.028H, where H is the height of the wall). The final criterion is intended to provide load factors that are similar to light-frame walls sheathed with wood structural panels, yet limit the overstrength of the panels (Section A3.3.4, requiring peak strength divided by design values to be between 2.5 and 5.0).

One of the underlying assumptions of the ICC ES AC04 Appendix A analysis is the ASD design value. The ASD design values for these walls were based on 315 plf, which is consistent with the underlying assumptions of the prescriptive SIPs portion of the 2009 and 2012 IRC. The summary information in Table 1 above is based on this design information.

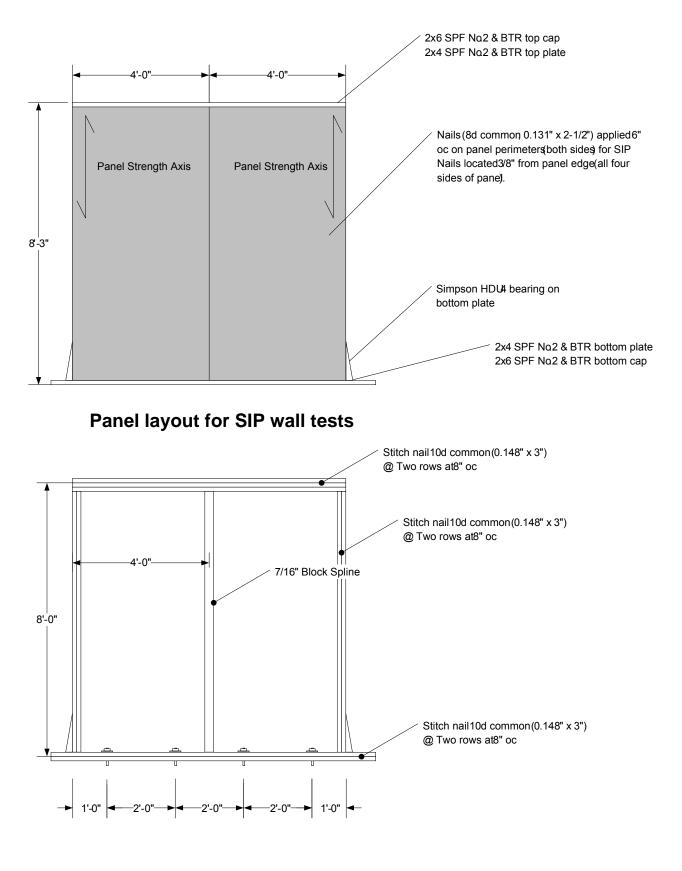
The three rightmost columns of Table 1 provide an average summary of the aforementioned evaluation attributes, respectively. A more detailed analysis for each individual wall test is provided in Appendix D.

In general, there was no distinguishable difference in the walls tested dry and the walls tested in the redry state after the wetting cycle. The post peak deformation was very close to the 0.028H criteria for all walls tested.

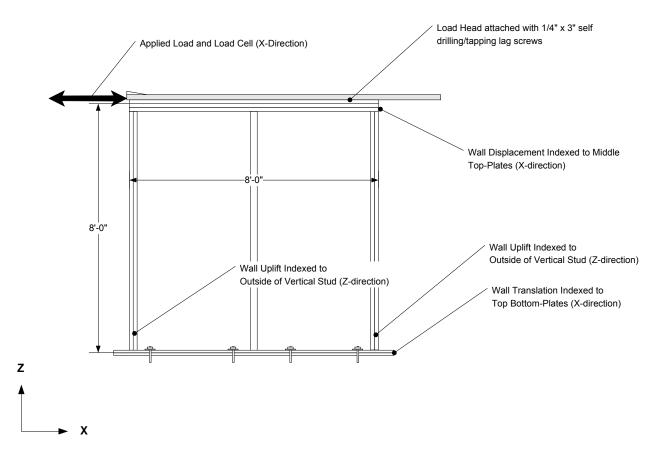
5. CONCLUSION

Based on the testing reported herein, the SIPs performance was insensitive to the wetting-redry moisture cycles. There was no distinguishable difference between the cyclic performance after a two-week and a four-week redry.

6. REFERENCES


- AF&PA. 2008. Special Design Provisions for Wind and Seismic. ANSI/AF&PA SDPWS. American Forest & Paper Association, Washington, DC.
- ASCE. 2005. *Minimum design loads for buildings and other structures.* ASCE-7. American Society of Civil Engineers. Reston, VA.
- APA. 2010. Qualified OSB Facing Materials for Structural Insulated Panels. APA Product Report PR-N610. Tacoma, WA.
- ASTM International. 2010. *Standard test methods for specific gravity of wood and wood-base materials*. ASTM D2395-07a. West Conshohocken, PA.
- ASTM International. 2010. Standard test methods for direct moisture content measurements of wood and wood-base materials. ASTM D4442-07. West Conshohocken, PA.
- ASTM International. 2010. Standard test methods of conducting strength tests of panels for building construction. ASTM E72-05. West Conshohocken, PA.
- ASTM International. 2010. Standard test methods for cyclic (reversed) load tests for shear resistance of vertical elements of the lateral force resisting systems for buildings. ASTM E2126-09. West Conshohocken, PA.
- ICC. 2009 and 2012. International Residential Code. International Code Council. Country Club Hills, IL.
- ICC ES. 2009. Acceptance criteria for sandwich panels AC04. ICC Evaluation Service, Inc., Whittier, CA.

7. APPENDICES


List of Appendices

Appendix A: Wall Construction Details	2 pages
Appendix B: OSB Facer and Lumber Moisture Content and Specific Gravity	2 pages
Appendix C: Structural Insulated Panels Cyclic Data	10 pages
Appendix D: Summary of Cyclic Properties	1 page
Appendix E: Photos	2 pages

Appendix A: Wall Construction Details (2 pages)

Framing layout for SIP wall tests

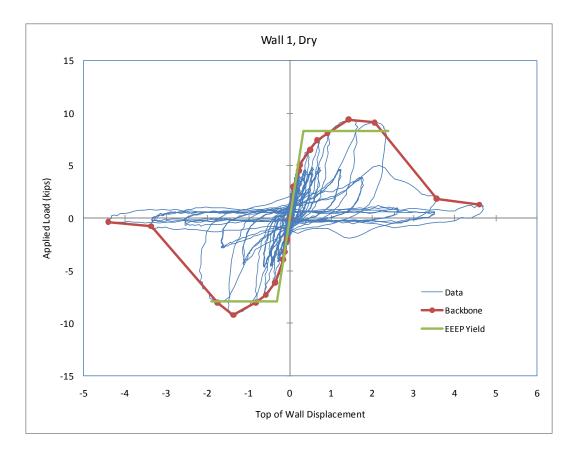
Instrumentation layout for SIP wall tests

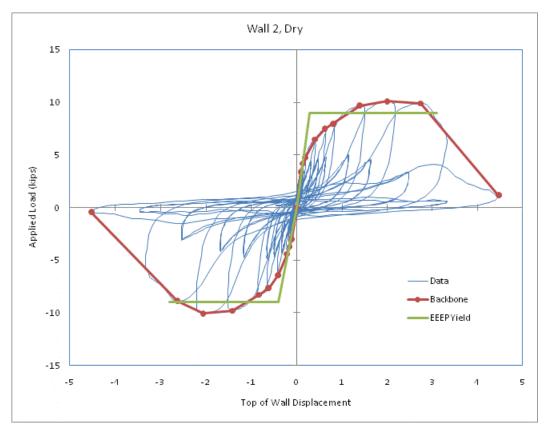
Appendix B: Facer and Lumber Moisture Content and Specific Gravity (2 pages)

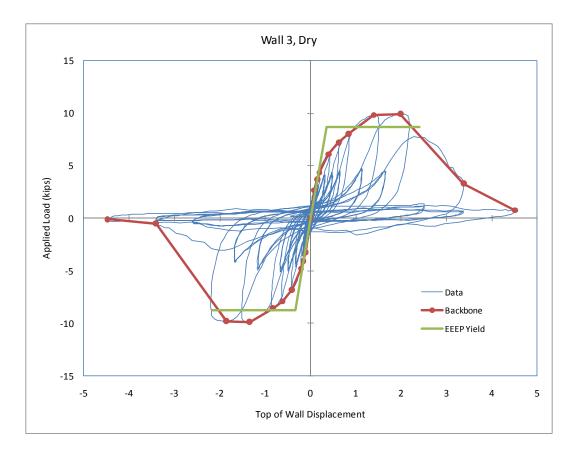
Panel Moisture Content

Technician:	Kevin Kallansrud
Date:	7/12/2011
Company:	SIPA
Location:	Gig Harbor, Washington
Product:	Facer Material for Racking Tests
Project:	7646
Balance:	JB6001-G

Specimen	As-received	Oven Dry	Moisture
Number	Weight	Weight	Content
	(g)	(g)	(%)
dry 1	n.a.	n.a.	n.a.
dry 1	n.a.	n.a.	n.a.
dry 2	433.5	413.6	4.8
dry 2	270.1	257.3	5.0
dry 3	483.3	458.8	5.3
dry 3	354.4	336.9	5.2
	Count		4
	Min		4.8
Summary Statistics,	Max		5.3
Dry	Mean		5.1
	Std Dev		0.2
	COV (%)		4.6
redry 1	240.4	222.5	8.0
redry 1	290.6	271.7	7.0
redry 2	478.7	446.5	7.2
redry 2	347.9	323.7	7.5
	Count		4
	Min		7.0
Summary Statistics,	Max		8.0
2 week Redry	Mean		7.4
	Std Dev		0.5
	COV (%)		6.3
redry 3	429.1	401.5	6.9
redry 3	460.7	432.9	6.4
	Count		2
	Min		6.4
Summary Statistics,	Max		6.9
4 week Redry	Mean		6.6
	Std Dev		0.3
	COV (%)		4.8


Lumber Moisture Content and Specific Gravity


Kevin Kallansrud
7/29/2011
SIPA
Gig Harbor, Washington
SPF stud material for shear walls
7371
QLT 51
JB6001-G


Specimen		As-rec	reived		Oven Dry	As-received	Oven Dry	Specific	Moisture
Number	Weight	Length	Width	Thick	Weight	Density	Density	Gravity	Content
	(g)	(in.)	(in.)	(in.)	(g)	(pcf)	(pcf)	,	(%)
1 dry bot	179.8	4.300	3.449	1.462	159.9	31.6	28.1	0.45	12.4
1 dry i top	197.4	5.030	3.489	1.495	178.9	28.7	26.0	0.42	10.3
1 dry top	199.3	5.101	3.483	1.495	179.9	28.6	25.8	0.41	10.8
2 dry bot	143.2	3.390	3.469	1.482	127.6	31.3	27.9	0.45	12.2
2 dry i top	183.4	4.232	3.449	1.475	165.4	32.5	29.3	0.47	10.9
2 dry top	207.9	4.649	3.485	1.505	188.4	32.5	29.4	0.47	10.4
3 dry bot	288.9	8.348	3.496	1.502	258.5	25.1	22.5	0.36	11.8
3 dry i top	180.7	3.647	3.460	1.494	163.5	36.5	33.0	0.53	10.5
3 dry top	162.0	3.688	3.219	1.494	146.8	34.8	31.5	0.51	10.4
	Count	0.000	0.210		1 1010	0110	0110	9	9
	Min							0.36	10.3
Summary Statistics,	Max							0.53	12.4
Dry 2x4s	Mean							0.45	11.1
D1y 2x10	Std Dev							0.05	0.8
	COV (%)							11.3	7.6
1 dry 2x6 bot	287.9	4 5 2 7	5.475	1.473	257.3	30.0	26.8	0.43	11.9
		4.537							
1 dry 2x6 top	335.1	5.331	5.492	1.493	302.7	29.2	26.4	0.42	10.7
2 dry 2x6 bot	237.1	4.877	4.159	1.496	212.2	29.8	26.6	0.43	11.7
2 dry 2x6 top	323.2	5.930	5.481	1.479	290.4	25.6	23.0	0.37	11.3
3 dry 2x6 bot	301.6	5.234	5.477	1.485	268.6	27.0	24.0	0.39	12.3
3 dry 2x6 top	215.0	4.010	5.462	1.484	193.2	25.2	22.6	0.36	11.3
	Count							6	6
	Min							0.36	10.7
Summary Statistics	Max							0.43	12.3
for Dry, 2x6s	Mean							0.40	11.5
	Std Dev							0.03	0.6
	COV (%)							7.7	4.8
1 redry bot	215.6	4.028	3.479	1.479	188.6	39.6	34.7	0.56	14.3
1 redry i top	239.6	5.478	3.482	1.495	216.1	32.0	28.9	0.46	10.9
1 redry top	237.1	5.541	3.489	1.500	213.9	31.2	28.1	0.45	10.8
2 redry bot	189.1	4.661	3.487	1.493	164.9	29.7	25.9	0.41	14.7
2 redry i top	425.9	10.027	3.483	1.495	389.6	31.1	28.4	0.46	9.3
2 redry top	198.5	4.688	3.470	1.487	178.8	31.3	28.2	0.45	11.0
	Count							6	6
	Min							0.41	9.3
Summary Statistics,	Max							0.56	14.7
2 week Redry 2x4s	Mean							0.47	11.8
,,	Std Dev							0.05	2.2
	COV (%)							10.2	18.2
1 redry 2x6 bot	292.6	4.414	5.459	1.488	256.7	31.1	27.3	0.44	14.0
1 redry 2x6 top	365.0	5.925	5.406	1.471	326.1	29.5	26.4	0.42	11.9
2 redry 2x6 bot	237.8	3.704	5.484	1.500	208.7	29.7	26.1	0.42	13.9
							20.1		
2 redry 2x6 top	281.4 Count	5.632	5.415	1.503	251.5	23.4	20.9	0.34 4	11.9 4
	Count								
0	Min							0.34	11.9
Summary Statistics,	Max							0.44	14.0
2 week Redry 2x6s	Mean							0.40	12.9
	Std Dev							0.05	1.2
	COV (%)							11.5	9.2
3 redry bot	224.3	5.729	3.484	1.494	194.6	28.7	24.9	0.40	15.3
3 redry i top	259.4	5.717	3.461	1.476	234.2	33.8	30.6	0.49	10.8
3 redry top	250.7	6.380	3.494	1.491	226.8	28.7	26.0	0.42	10.5
	Count							3	3
	Min							0.40	10.5
Summary Statistics,	Max							0.49	15.3
4 week Redry 2x4s	Mean							0.43	12.2
	Std Dev							0.05	2.7
	COV (%)							11.1	21.9
3 redry 2x6 bot	414.5	5.662	5.489	1.499	363.3	33.9	29.7	0.48	14.1
3 redry 2x6 top	301.6	5.808	5.468	1.470	270.9	24.6	22.1	0.35	11.3
· · · · · · · · ·	Count							2	2
	Min							0.35	11.3
Summary Statistics,	Max							0.48	14.1
4 week Redry 2x6s	Mean							0.40	12.7
. HOOK HOORY ENDS	Std Dev							0.09	2.0
	COV (%)							20.7	15.4
	UUV (70)	1						20.1	10.4

Appendix C: Structural Insulated Panels Cyclic Data (10 pages)

	Dry1	For tota	l length	Specimen Dry1	Per uni	t length	Specimen	Dry1	For tota	l length									
Dry 1		CUREE	cyclic test	Dry 1	CUREE	cyclic test	Dry 1		CUREE c	yclic test									
Effective v	wall length	96in.	2.44m	Effective wall length	96in.	2.44m	Effective wa	ll length	96in.	2.44m									
Date:	7/8/2011	Time:	15:26	Date: 7/8/2011	Time:	15:26	cycle	avg. disp	olacement	avg	. load	work p	er cycle	cumulat	ive work	cyclic s	stiffness	damping	line
EEEP I	Parameters	units	initial	EEEP Parameters	units	initial	initial	in.	mm	Kips	KN	Kip·ft.	KN∙m	Kip∙ft.	KN∙m	Kip/in.	KN/mm	ratio	number
Peak l	load, F _{peak}	Kips	9.289	Peak unit load, v _{peak}	Kip/ft.	1.161		0	0	0	0	0	0	0	0		-		13
I Cak I	ioad, 1 peak	KN	41.317	I cak unit load, v _{peak}	KN/m	16.944	1	0.082	2.070	2.503	11.135	0.016	0.022	0.016	0.022	30.449	5.332	0.150	102
Drift at ne	eak load, Δ_{peak}	in.	1.397	Drift at capacity, Δ_{peak}	in.	1.397	7	0.166	4.224	3.863	17.182	0.052	0.070	0.208	0.282	24.035	4.209	0.146	753
Dint at pe	car load, Δ_{peak}	mm	35.47	Difft at capacity, Δ_{peak}	mm	35.47	14	0.200	5.085	4.489	19.966	0.076	0.102	0.478	0.648	22.670	3.970	0.157	1517
Vield	load, F _{vield}	Kips	8.107	Yield unit load, v _{vield}	Kip/ft.	1.013	21	0.424	10.757	6.325	28.134	0.241	0.327	1.012	1.372	15.230	2.667	0.171	2286
i iciu i	ioad, i yield	KN	36.059	ricid unit load, v _{yield}	KN/m	14.788	25	0.621	15.776	7.360	32.736	0.386	0.523	1.721	2.333	11.883	2.081	0.161	2729
Drift at vi	eld load, Δ_{vield}	in.	0.325	Drift at yield load, Δ_{yield}	in.	0.325	29	0.867	22.024	8.042	35.770	0.514	0.696	2.683	3.637	9.298	1.628	0.141	3174
Dintaryn	erd roud, Zyield	mm	8.26	Diffe at yield foud, Ayield	mm	8.26	32	1.397	35.475	9.289	41.317	1.364	1.850	4.446	6.028	6.652	1.165	0.201	3508
1	tional limit,	Kips	3.716	Proportional limit,	Kip/ft.	0.464	35	1.904	48.365	8.577	38.152	1.892	2.565	7.100	9.626	4.510	0.790	0.220	3842
0.4	4F _{peak}	KN	16.527	0.4v _{peak}	KN/m	6.778	38	1.804	45.828	3.473	15.448	1.579	2.140	9.860	13.367	0.502	0.088	0.745	4175
	prop. limit,	in.	0.149	Drift at prop. limit,	in.	0.149	41	3.558	90.373	1.096	4.877	0.776	1.053	11.477	15.560	-0.041	-0.007	0.827	4509
$\Delta @$	0.4F _{peak}	mm	3.79	$\Delta @0.4v_{peak}$	mm	3.79													
Failure lo	ad or 0.8F _{neak}	Kips	7.431	Unit load at failure or	Kip/ft.	0.929													
I unure io	del of 0.01 peak	KN	33.053	0.8v _{peak}	KN/m	13.555													
Drift at f	ailure, Δ_{failure}	in.	2.147	Drift at failure, Δ_{failure}	in.	2.147													
Dintatio	anure, Zfailure	mm	54.54	Diffe at failure, Dialure	mm	54.54													
Elastic s	stiffness, K _e	Kip/in.	24.925	Shear modulus, G	Kip/in.	24.925													
@0	0.4F _{peak}	KN/mm			inp/iiii	24.725													
			4.365	@0.4F _{peak}	KN/mm	4.365													
Work	until failura	Kip∙ft.	4.365 9.860	@0.4F _{peak} Work until failure per	-														
Work u	until failure			1	KN/mm	4.365													
	until failure @ .32 in.	Kip∙ft.	9.860	Work until failure per	KN/mm Kip·ft./ft.	4.365 1.232	cycle	Negativ	re stroke	Positiv	ve stroke	Negativ	e stroke	Positivo	e stroke	Area,	Kip-in.	Unit load	d, KN/m
Load		Kip∙ft. KN∙m	9.860 13.367	Work until failure per unit length	KN/mm Kip·ft./ft. KN·m/m	4.365 1.232 5.482	cycle initial	Negativ in.	r e stroke Kips	Positiv in.	ve stroke Kips	Negativ mm	e stroke KN	Positive mm	e stroke KN	Area, negative	Kip-in. positive	Unit load	,
Load (8.1	@ .32 in.	Kip∙ft. KN∙m Kips	9.860 13.367 5.616	Work until failure per unit length Unit load @ .32 in.	KN/mm Kip·ft./ft. KN·m/m Kips/ft.	4.365 1.232 5.482 0.702		0	1	-		0				,			,
Load (8.1 Load	@ .32 in. 13 mm)	Kip∙ft. KN∙m Kips KN	9.860 13.367 5.616 24.982	Work until failure per unit length Unit load @ .32 in. (8.13 mm)	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m	4.365 1.232 5.482 0.702 10.245		in.	Kips	in.	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load (8.1 Load (12.	@ .32 in. 13 mm) @ .48 in. 19 mm)	Kip·ft. KN·m Kips KN Kips KN	9.860 13.367 5.616 24.982 6.616	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm)	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft.	4.365 1.232 5.482 0.702 10.245 0.827	initial	in. 0	Kips 0	in. 0	Kips 0	mm 0	KN 0 -8.986	mm 0	KN 0	negative 0	positive 0	negative 0	positive 0
Load (8.1 Load (12. Load	@ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in.	Kip·ft. KN·m Kips KN Kips KN Kips	9.860 13.367 5.616 24.982 6.616 29.429 8.252	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in.	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031	initial 1 7	in. 0 -0.076 -0.119	Kips 0 -2.020 -3.197	in. 0 0.087 0.214	Kips 0 2.987 4.528	0 -1.923 -3.023	KN 0 -8.986 -14.222	mm 0 2.217 5.425	KN 0 13.285 20.142	negative 0 0.076 0.113	positive 0 0.130 0.475	negative 0 -3.685 -5.833	0 5.448 8.260
Load (8.1 Load (12. Load (24.)	@ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in. 38 mm)	Kip·ft. KN·m Kips KN Kips KN Kips KN	9.860 13.367 5.616 24.982 6.616 29.429 8.252 36.704	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in. (24.38 mm)	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m Kips/ft. KN/m	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031 15.052	initial 1 7 14	in. 0 -0.076 -0.119 -0.164	Kips 0 -2.020 -3.197 -3.934	in. 0 0.087 0.214 0.237	Kips 0 2.987 4.528 5.043	mm 0 -1.923 -3.023 -4.158	KN 0 -8.986 -14.222 -17.499	mm 0 2.217 5.425 6.012	KN 0 13.285 20.142 22.433	negative 0 0.076 0.113 0.159	0 0.130 0.475 0.111	negative 0 -3.685 -5.833 -7.177	0 5.448 8.260 9.200
Load (8.1 Load (12. Load (24.) Load	@ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in. 38 mm) @ 1.6 in.	Kip·ft. KN·m Kips KN Kips KN Kips KN Kips	9.860 13.367 5.616 24.982 6.616 29.429 8.252 36.704 8.908	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in. (24.38 mm) Unit load @ 1.6 in.	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m Kips/ft.	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031 15.052 1.113	initial 1 7 14 21	in. 0 -0.076 -0.119 -0.164 -0.358	Kips 0 -2.020 -3.197 -3.934 -6.130	in. 0 0.087 0.214 0.237 0.489	Kips 0 2.987 4.528 5.043 6.520	mm 0 -1.923 -3.023 -4.158 -9.088	KN 0 -8.986 -14.222 -17.499 -27.267	mm 0 2.217 5.425 6.012 12.426	KN 0 13.285 20.142 22.433 29.001	negative 0 0.076 0.113 0.159 0.977	positive 0 0.130 0.475 0.111 1.460	negative 0 -3.685 -5.833 -7.177 -11.182	0 5.448 8.260 9.200 11.893
Load (8.1 Load (12. Load (24. Load (40.	 @ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in. 38 mm) @ 1.6 in. 64 mm) 	Kip·ft. KN·m Kips KN Kips KN Kips KN	9.860 13.367 5.616 24.982 6.616 29.429 8.252 36.704 8.908 39.622	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in. (24.38 mm) Unit load @ 1.6 in. (40.64 mm)	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m Kips/ft. KN/m	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031 15.052 1.113 16.249	initial 1 7 14 21 25	in. 0 -0.076 -0.119 -0.164 -0.358 -0.586	Kips 0 -2.020 -3.197 -3.934 -6.130 -7.320	in. 0 0.087 0.214 0.237 0.489 0.656	Kips 0 2.987 4.528 5.043 6.520 7.399	mm 0 -1.923 -3.023 -4.158 -9.088 -14.895	KN 0 -8.986 -14.222 -17.499 -27.267 -32.560	mm 0 2.217 5.425 6.012 12.426 16.657	KN 0 13.285 20.142 22.433 29.001 32.912	negative 0 0.076 0.113 0.159 0.977 1.537	positive 0 0.130 0.475 0.111 1.460 1.159	negative 0 -3.685 -5.833 -7.177 -11.182 -13.353	positive 0 5.448 8.260 9.200 11.893 13.497
Load (8.1 Load (12. Load (24. Load (40.	@ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in. 38 mm) @ 1.6 in.	Kip·ft. KN·m Kips KN Kips KN Kips KN Kips	9.860 13.367 5.616 24.982 6.616 29.429 8.252 36.704 8.908	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in. (24.38 mm) Unit load @ 1.6 in.	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m Kips/ft.	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031 15.052 1.113	initial 1 7 14 21 25 29	in. 0 -0.076 -0.119 -0.164 -0.358 -0.586 -0.822	Kips 0 -2.020 -3.197 -3.934 -6.130 -7.320 -8.027	in. 0 0.087 0.214 0.237 0.489 0.656 0.912	Kips 0 2.987 4.528 5.043 6.520 7.399 8.057	mm 0 -1.923 -3.023 -4.158 -9.088 -14.895 -20.886	KN 0 -8.986 -14.222 -17.499 -27.267 -32.560 -35.703	mm 0 2.217 5.425 6.012 12.426 16.657 23.162	KN 0 13.285 20.142 22.433 29.001 32.912 35.837	negative 0 0.076 0.113 0.159 0.977 1.537 1.810	positive 0 0.130 0.475 0.111 1.460 1.159 1.979	negative 0 -3.685 -5.833 -7.177 -11.182 -13.353 -14.642	positive 0 5.448 8.260 9.200 11.893 13.497 14.697
Load (8.1 Load (12. Load (24. Load (40.	 @ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in. 38 mm) @ 1.6 in. 64 mm) 	Kip·ft. KN·m Kips KN Kips KN Kips KN Kips	9.860 13.367 5.616 24.982 6.616 29.429 8.252 36.704 8.908 39.622	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in. (24.38 mm) Unit load @ 1.6 in. (40.64 mm)	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m Kips/ft.	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031 15.052 1.113 16.249	initial 1 7 14 21 25 29 32	in. 0 -0.076 -0.119 -0.164 -0.358 -0.586 -0.822 -1.373	Kips 0 -2.020 -3.197 -3.934 -6.130 -7.320 -8.027 -9.209	in. 0 0.087 0.214 0.237 0.489 0.656 0.912 1.421	Kips 0 2.987 4.528 5.043 6.520 7.399 8.057 9.369	mm 0 -1.923 -3.023 -4.158 -9.088 -14.895 -20.886 -34.869	KN 0 -8.986 -14.222 -17.499 -27.267 -32.560 -35.703 -40.961	mm 0 2.217 5.425 6.012 12.426 16.657 23.162 36.081	KN 0 13.285 20.142 22.433 29.001 32.912 35.837 41.672	negative 0 0.076 0.113 0.159 0.977 1.537 1.810 4.744	positive 0 0.130 0.475 0.111 1.460 1.159 1.979 4.431	negative 0 -3.685 -5.833 -7.177 -11.182 -13.353 -14.642 -16.798	positive 0 5.448 8.260 9.200 11.893 13.497 14.697 17.090
Load (8.1 Load (12. Load (24. Load (40.	 @ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in. 38 mm) @ 1.6 in. 64 mm) 	Kip·ft. KN·m Kips KN Kips KN Kips KN Kips	9.860 13.367 5.616 24.982 6.616 29.429 8.252 36.704 8.908 39.622	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in. (24.38 mm) Unit load @ 1.6 in. (40.64 mm)	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m Kips/ft.	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031 15.052 1.113 16.249	initial 1 7 14 21 25 29 32 35	in. 0 -0.076 -0.119 -0.164 -0.358 -0.586 -0.822 -1.373 -1.757	Kips 0 -2.020 -3.197 -3.934 -6.130 -7.320 -8.027 -9.209 -8.043	in. 0 0.087 0.214 0.237 0.489 0.656 0.912 1.421 2.051	Kips 0 2.987 4.528 5.043 6.520 7.399 8.057 9.369 9.112	mm 0 -1.923 -3.023 -4.158 -9.088 -14.895 -20.886 -34.869 -44.635	KN 0 -8.986 -14.222 -17.499 -27.267 -32.560 -35.703 -40.961 -35.774	mm 0 2.217 5.425 6.012 12.426 16.657 23.162 36.081 52.095	KN 0 13.285 20.142 22.433 29.001 32.912 35.837 41.672 40.531	negative 0 0.076 0.113 0.159 0.977 1.537 1.810 4.744 3.317	positive 0 0.130 0.475 0.111 1.460 1.159 1.979 4.431 5.826	negative 0 -3.685 -5.833 -7.177 -11.182 -13.353 -14.642 -16.798 -14.671	positive 0 5.448 8.260 9.200 11.893 13.497 14.697 17.090 16.622
Load (8.1 Load (12. Load (24.) Load (40.)	 @ .32 in. 13 mm) @ .48 in. 19 mm) @ .96 in. 38 mm) @ 1.6 in. 64 mm) 	Kip·ft. KN·m Kips KN Kips KN Kips KN Kips	9.860 13.367 5.616 24.982 6.616 29.429 8.252 36.704 8.908 39.622	Work until failure per unit length Unit load @ .32 in. (8.13 mm) Unit load @ .48 in. (12.19 mm) Unit load @ .96 in. (24.38 mm) Unit load @ 1.6 in. (40.64 mm)	KN/mm Kip·ft./ft. KN·m/m Kips/ft. KN/m Kips/ft. KN/m Kips/ft.	4.365 1.232 5.482 0.702 10.245 0.827 12.069 1.031 15.052 1.113 16.249	initial 1 7 14 21 25 29 32	in. 0 -0.076 -0.119 -0.164 -0.358 -0.586 -0.822 -1.373	Kips 0 -2.020 -3.197 -3.934 -6.130 -7.320 -8.027 -9.209	in. 0 0.087 0.214 0.237 0.489 0.656 0.912 1.421	Kips 0 2.987 4.528 5.043 6.520 7.399 8.057 9.369	mm 0 -1.923 -3.023 -4.158 -9.088 -14.895 -20.886 -34.869	KN 0 -8.986 -14.222 -17.499 -27.267 -32.560 -35.703 -40.961	mm 0 2.217 5.425 6.012 12.426 16.657 23.162 36.081	KN 0 13.285 20.142 22.433 29.001 32.912 35.837 41.672	negative 0 0.076 0.113 0.159 0.977 1.537 1.810 4.744	positive 0 0.130 0.475 0.111 1.460 1.159 1.979 4.431	negative 0 -3.685 -5.833 -7.177 -11.182 -13.353 -14.642 -16.798	positiv 0 5.448 8.260 9.200 11.89 13.49 14.69 17.09

41

-4.404

-0.363

4.592

1.282

-111.864

-1.614

116.632

5.702

0.588

-0.662

1.612

Specimen	Dry2	For tot	al length	Specimen Dry2	Per uni	it length	Specimen	Dry2	For tota	l length									
Dry 2		CUREE	cyclic test	Dry 2	CUREE	cyclic test	Dry 2		CUREE c	yclic test									
Effective	wall length	96in.	2.44m	Effective wall length	96in.	2.44m	Effective wa	ll length	96in.	2.44m									
Date:	7/12/2011	Time:	11:03	Date: 7/12/2011	Time:	11:03	cycle	avg. disj	olacement	avg	. load	work p	er cycle	cumulat	ive work	cyclic s	tiffness	damping	line
EEEP	Parameters	units	initial	EEEP Parameters	units	initial	initial	in.	mm	Kips	KN	Kip∙ft.	KN ⋅ m	Kip∙ft.	KN·m	Kip/in.	KN/mm	ratio	number
Peak	load, F _{peak}	Kips	10.091	Peak unit load, v _{peak}	Kip/ft.	1.261		0	0	0	0	0	0	0	0				13
1 cuit	Peak peak	KN	44.886	r outr unit roudi, v peak	KN/m	18.408	1	0.098	2.502	3.190	14.190	0.027	0.036	0.027	0.036	32.881	5.758	0.163	109
Drift at p	eak load, Δ_{peak}	in.	2.028	Drift at capacity, Δ_{peak}	in.	2.028	7	0.149	3.774	3.951	17.573	0.045	0.061	0.194	0.263	26.854	4.703	0.146	778
Dintarp	etali Iotadi, Apeak	mm	51.51	Diffe at expansion, Depeak	mm	51.51	14	0.201	5.112	4.585	20.392	0.070	0.094	0.424	0.575	22.940	4.017	0.144	1557
Yield	load, F _{vield}	Kips	8.982	Yield unit load, vvield	Kip/ft.	1.123	21	0.406	10.325	6.448	28.680	0.224	0.304	0.876	1.188	15.864	2.778	0.163	2333
Tiela	roud, i yield	KN	39.952	r loid aint loud, vyiela	KN/m	16.385	25	0.620	15.758	7.571	33.677	0.367	0.497	1.499	2.033	12.204	2.137	0.149	2777
Drift at vi	ield load, Δ_{vield}	in.	0.349	Drift at yield load, Δ_{yield}	in.	0.349	29	0.816	20.715	8.123	36.133	0.470	0.638	2.347	3.182	9.961	1.744	0.136	3222
		mm	8.86		mm	8.86	32	1.406	35.704	9.753	43.381	1.304	1.768	3.978	5.393	6.939	1.215	0.182	3555
-	tional limit,	Kips	4.037	Proportional limit,	Kip/ft.	0.505	35	2.028	51.507	10.091	44.886	1.774	2.405	6.379	8.648	4.978	0.872	0.166	3888
	.4F _{peak}	KN	17.954	0.4v _{peak}	KN/m	7.363	38	2.687	68.246	9.380	41.722	2.937	3.981	10.265	13.917	3.489	0.611	0.222	4222
	prop. limit,	in.	0.157	Drift at prop. limit,	in.	0.157	41	2.846	72.296	2.839	12.629	1.523	2.065	13.176	17.864	0.972	0.170	0.350	4555
$\Delta @$	0.4F _{peak}	mm	3.98	$\Delta @0.4v_{peak}$	mm	3.98													
Failure lo	oad or 0.8F _{neak}	Kips	8.073	Unit load at failure or	Kip/ft.	1.009													
i unure ic	de of oror peak	KN	35.909	0.8v _{peak}	KN/m	14.726													
Drift at f	failure, Δ_{failure}	in.	2.956	Drift at failure, $\Delta_{failure}$	in.	2.956													
		mm	75.08		mm	75.08													
	stiffness, K _e	Kip/in.	26.565	Shear modulus, G	Kip/in.	26.565													
@(0.4F _{peak}	KN/mm	4.652	@0.4F _{peak}	KN/mm	4.652													
Work	until failure	Kip∙ft.	13.176	Work until failure per	Kip·ft./ft.	1.647													
WOIK	unun fanure	KN∙m	17.864	unit length	KN·m/m	7.326													
	@ .32 in.	Kips	5.653	Unit load @ .32 in.	Kips/ft.	0.707	cycle	Negativ	e stroke	Positiv	ve stroke	Negativ		Positiv	e stroke	Area,	Kip-in.	Unit loa	d, KN/m
(8.	13 mm)	KN	25.146	(8.13 mm)	KN/m	10.312	initial	in.	Kips	in.	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load	@ .48 in.	Kips	6.832	Unit load @ .48 in.	Kips/ft.	0.854		0	0	0	0	0	0	0	0	0	0	0	0
(12.	.19 mm)	KN	30.387	(12.19 mm)	KN/m	12.462	1	-0.108	-2.999	0.089	3.381	-2.743	-13.341	2.261	15.040	0.162	0.150	-5.471	6.168
Load	@ .96 in.	Kips	8.525	Unit load @ .96 in.	Kips/ft.	1.066	7	-0.160	-3.733	0.137	4.169	-4.061	-16.604	3.487	18.542	0.175	0.182	-6.809	7.604
	.38 mm)	KN	37.921	(24.38 mm)	KN/m	15.551	14	-0.215	-4.414	0.188	4.755	-5.453	-19.635	4.770	21.150	0.223	0.225	-8.052	8.674
	@ 1.6 in.	Kips	9.862	Unit load @ 1.6 in.	Kips/ft.	1.233	21	-0.411	-6.428	0.402	6.468	-10.437	-28.592	10.213	28.768	1.064	1.203	-11.726	11.798
	.64 mm)	KIP3 KN	43.865	(40.64 mm)	KN/m	17.989	21	-0.622	-7.678	0.619	7.464	-15.789	-34.153	15.728	33.201	1.486	1.512	-14.006	13.616
	ity factor, μ		8.82	$\zeta_{eq} @ v_{peak}$	1.1.0.11	0.166	25	-0.833	-8.301	0.798	7.946	-21.158	-36.922	20.272	35.344	1.689	1.378	-15.142	14.495
Ductin	πy τασιοτ, μ		0.02	Seq 🗢 🖌 peak		0.100													
							32	-1.420	-9.817	1.391	9.689	-36.073	-43.667	35.334	43.096	5.319	5.229	-17.908	17.674
							35	-2.064	-10.080	1.992	10.102	-52.418	-44.837	50.597	44.935	6.402	5.946	-18.388	18.428
							38	-2.628	-8.882	2.746	9.877	-66.746	-39.509	69.746	43.935	5.348	7.531	-16.203	18.018

41

-4.524

-0.433

4.467

1.165

-114.899

-1.924

113.467

5.180

8.830

9.503

-0.789

Specimen	dry3	For tota	al length	Specimen dry3	Per uni	t length	Specimen	dry3	For tota	length									
dry 3		CUREE	cyclic test	dry 3	CUREE	cyclic test	dry 3		CUREE c	yclic test									
Effective w	vall length	96in.	2.44m	Effective wall length	96in.	2.44m	Effective wa	ll length	96in.	2.44m									
Date:	7/12/2011	Time:	15:23	Date: 7/12/2011	Time:	15:23	cycle	avg. disj	olacement	avg	. load	work p	er cycle	cumulat	ive work	cyclic s	stiffness	damping	line
EEEP P	Parameters	units	initial	EEEP Parameters	units	initial	initial	in.	mm	Kips	KN	Kip·ft.	KN·m	Kip∙ft.	KN∙m	Kip/in.	KN/mm	ratio	number
Peak la	oad, F _{peak}	Kips	9.897	Peak unit load, v _{peak}	Kip/ft.	1.237		0	0	0	0	0	0	0	0		•		13
I cak h	oud, I peak	KN	44.023	r ouk unit loud, v _{peak}	KN/m	18.054	1	0.093	2.363	2.942	13.084	0.027	0.036	0.027	0.036	31.766	5.563	0.183	112
Drift at ne	ak load, Δ_{peak}	in.	1.664	Drift at capacity, Δ_{peak}	in.	1.664	7	0.151	3.829	3.887	17.288	0.044	0.060	0.193	0.262	25.769	4.513	0.144	778
Dint at pe	are roud, Apeak	mm	42.26	Diffe at cupacity, Apeak	mm	42.26	14	0.201	5.112	4.567	20.315	0.067	0.091	0.426	0.577	22.682	3.972	0.139	1555
Yield I	oad, F _{vield}	Kips	8.715	Yield unit load, vvield	Kip/ft.	1.089	21	0.403	10.225	6.441	28.648	0.227	0.308	0.887	1.202	15.989	2.800	0.167	2332
i iciu i	yield	KN	38.766	rield unit loud, vyield	KN/m	15.898	25	0.618	15.695	7.564	33.645	0.365	0.495	1.512	2.050	12.243	2.144	0.149	2776
Drift at vie	eld load, Δ_{vield}	in.	0.346	Drift at yield load, Δ_{yield}	in.	0.346	29	0.836	21.228	8.306	36.947	0.483	0.654	2.382	3.230	9.941	1.741	0.133	3220
Dintaryn	Julia Totad, Ayield	mm	8.79		mm	8.79	32	1.370	34.806	9.847	43.797	1.305	1.769	4.025	5.457	7.188	1.259	0.185	3554
1	ional limit,	Kips	3.959	Proportional limit,	Kip/ft.	0.495	35	1.920	48.759	9.859	43.854	1.784	2.419	6.436	8.726	5.140	0.900	0.180	3887
	4F _{peak}	KN	17.609	0.4v _{peak}	KN/m	7.222	38	2.154	54.723	5.409	24.061	2.057	2.788	9.464	12.831	2.456	0.430	0.329	4221
	prop. limit,	in.	0.157	Drift at prop. limit,	in.	0.157	41	1.793	45.531	1.416	6.297	1.034	1.402	11.389	15.440	-0.555	-0.097	2.624	4554
Δ@0	0.4F _{peak}	mm	3.99	$\Delta @0.4v_{peak}$	mm	3.99													
Failure loa	ad or 0.8F _{neak}	Kips	7.918	Unit load at failure or	Kip/ft.	0.990													
i unure not	id of oror peak	KN	35.218	0.8v _{peak}	KN/m	14.443													
Drift at fa	ailure, $\Delta_{failure}$	in.	2.287	Drift at failure, $\Delta_{failure}$	in.	2.287													
		mm	58.10		mm	58.10													
Elastic s	tiffness, K _e	Kip/in.	25.251	Shear modulus, G	Kip/in.	25.251													
@0	.4F _{peak}	KN/mm	4.422	@0.4F _{peak}	KN/mm	4.422													
Work u	ntil failure	Kip∙ft.	9.464	Work until failure per	Kip·ft./ft.	1.183													
		KN∙m	12.831	unit length	KN·m/m	5.262												-	
	@ .32 in.	Kips	5.668	Unit load @ .32 in.	Kips/ft.	0.708	cycle	Negativ	e stroke		ve stroke	Negativ	e stroke	Positive		,	Kip-in.	Unit loa	ıl, KN/m
(8.1	3 mm)	KN	25.209	(8.13 mm)	KN/m	10.338	initial	in.	Kips	in.	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load	@ .48 in.	Kips	6.844	Unit load @ .48 in.	Kips/ft.	0.855		0	0	0	0	0	0	0	0	0	0	0	0
(12.1	19 mm)	KN	30.441	(12.19 mm)	KN/m	12.484	1	-0.105	-3.226	0.081	2.657	-2.677	-14.349	2.050	11.819	0.170	0.107	-5.885	4.847
Load	@ .96 in.	Kips	8.661	Unit load @ .96 in.	Kips/ft.	1.083	7	-0.156	-4.075	0.146	3.698	-3.960	-18.126	3.698	16.449	0.184	0.206	-7.434	6.746
	38 mm)	KN	38.526	(24.38 mm)	KN/m	15.800	14	-0.209	-4.799	0.194	4.335	-5.298	-21.347	4.925	19.282	0.234	0.194	-8.755	7.908
Load	@ 1.6 in.	Kips	9.846	Unit load @ 1.6 in.	Kips/ft.	1.231	21	-0.410	-6.807	0.395	6.075	-10.411	-30.276	10.038	27.020	1.168	1.048	-12.417	11.081
	64 mm)	KN	43.793	(40.64 mm)	KN/m	17.960	25	-0.616	-7.932	0.620	7.197	-15.651	-35.280	15.738	32.010	1.520	1.489	-14.469	13.128
,	y factor, µ		6.61	$\zeta_{eq} @ v_{peak}$		0.182	29	-0.831	-8.575	0.840	8.038	-21.112	-38.142	21.344	35.752	1.774	1.681	-15.642	14.662
Ductint	, πατισι, μ		0.01	Seq 🗢 • peak		0.102	32	-1.348		1.393	9.817		-43.928	35.380	43.667				17.908
									-9.876			-34.232				4.765	4.933	-18.015	
							35	-1.859	-9.800	1.980	9.919	-47.224	-43.589	50.295	44.118	5.032	5.794	-17.876	18.093
							38	-3.411	-0.510	3.378	3.289	-86.637	-2.269	85.806	14.631	7.999	9.233	-0.931	6.000

-0.116

4.504

0.754

-113.756

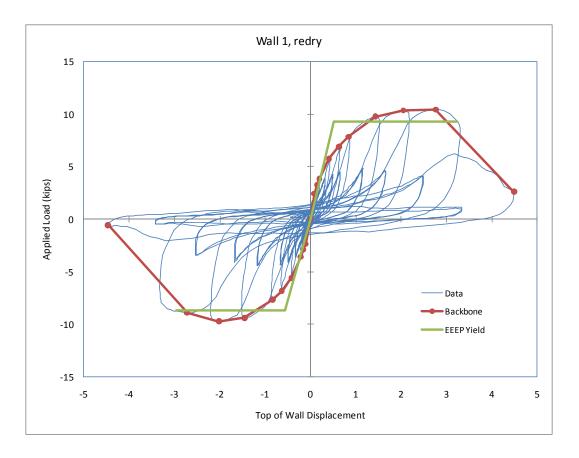
-0.514

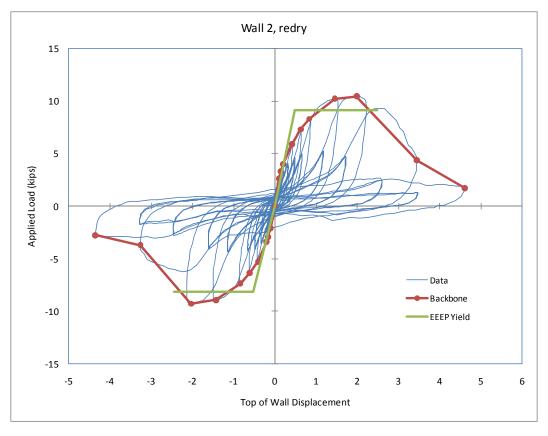
114.409

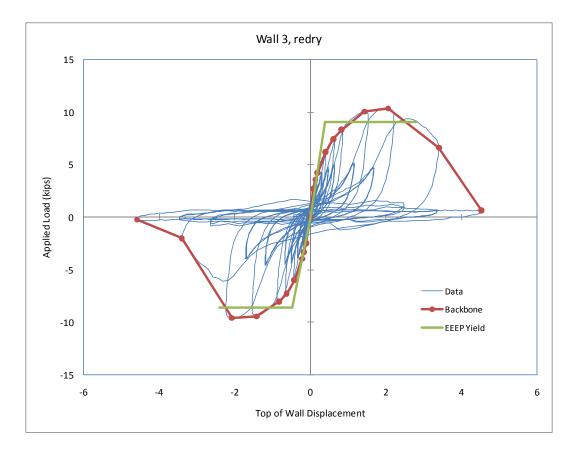
3.355

0.334

2.277


-0.211


1.376


41

-4.479

Specimen	Redry1	For tota	al length	Specimen Redry1	Per uni	t length	Specimen	Redry1	For tota	llength									
Redry1		CUREE	cyclic test	Redry1	CUREE	cyclic test	Redry1		CUREE c	yclic test									
Effective wa	all length	96in.	2.44m	Effective wall length	96in.	2.44m	Effective wa	all length	96in.	2.44m									
Date:	7/11/2011	Time:	13:46	Date: 7/11/2011	Time:	13:46	cycle	avg. disj	olacement	avg	. load	work p	er cycle	cumulat	ive work	cyclic s	stiffness	damping	line
EEEP P	arameters	units	initial	EEEP Parameters	units	initial	initial	in.	mm	Kips	KN	Kip·ft.	KN·m	Kip•ft.	KN∙m	Kip/in.	KN/mm	ratio	number
Peak lo	oad, F _{peak}	Kips	10.083	Peak unit load, v _{peak}	Kip/ft.	1.260		0	0	0	0	0	0	0	0		-		13
r out to	reak peak	KN	44.847	r oute unite routel, v peak	KN/m	18.392	1	0.099	2.520	2.396	10.659	0.020	0.027	0.020	0.027	24.644	4.316	0.163	111
Drift at neg	ak load, Δ_{peak}	in.	2.390	Drift at capacity, Δ_{peak}	in.	2.390	7	0.151	3.839	3.080	13.701	0.035	0.048	0.146	0.198	20.519	3.593	0.146	778
Dintarpea	in loud, in peak	mm	60.70	Diffe at eapaenty, Apeak	mm	60.70	14	0.208	5.277	3.714	16.520	0.055	0.074	0.325	0.441	17.953	3.144	0.135	1556
Yield lo	oad, F _{vield}	Kips	9.015	Yield unit load, vvield	Kip/ft.	1.127	21	0.412	10.471	5.674	25.237	0.185	0.251	0.689	0.934	13.773	2.412	0.151	2332
i leid le	oud, i yield	KN	40.099	rield unit foud, vyield	KN/m	16.445	25	0.628	15.960	6.865	30.537	0.326	0.442	1.231	1.669	10.926	1.913	0.144	2777
Drift at vie	ld load, Δ_{vield}	in.	0.539	Drift at yield load, Δ_{yield}	in.	0.539	29	0.839	21.311	7.755	34.494	0.451	0.611	2.023	2.742	9.243	1.619	0.132	3221
Dintaryici	id loud, Zyield	mm	13.69		mm	13.69	32	1.442	36.619	9.577	42.599	1.261	1.710	3.590	4.867	6.645	1.164	0.174	3554
1	onal limit,	Kips	4.033	Proportional limit,	Kip/ft.	0.504	35	2.033	51.627	10.039	44.654	1.768	2.397	5.977	8.103	4.938	0.865	0.165	3888
	F _{peak}	KN	17.939	0.4v _{peak}	KN/m	7.357	38	2.740	69.602	9.667	42.997	3.032	4.110	9.962	13.506	3.526	0.617	0.218	4221
	prop. limit,	in.	0.241	Drift at prop. limit,	in.	0.241	41	3.183	80.843	4.149	18.454	2.217	3.006	13.738	18.625	1.304	0.228	0.321	4555
$\Delta @0$.4F _{peak}	mm	6.12	$\Delta @0.4v_{peak}$	mm	6.12													
Failure loa	d or 0.8F _{neak}	Kips	8.066	Unit load at failure or	Kip/ft.	1.008													
i unure iou	d of 0.01 peak	KN	35.878	0.8v _{peak}	KN/m	14.714													
Drift at fa	ilure, $\Delta_{failure}$	in.	3.087	Drift at failure, $\Delta_{failure}$	in.	3.087													
Dintatia	failure, Zfailure	mm	78.41	Diffe at failure, Dfailure	mm	78.41													
Elastic st	iffness, K _e	Kip/in.	16.762	Shear modulus, G	Kip/in.	16.762													
@0.	4F _{peak}	KN/mm	2.935	@0.4F _{peak}	KN/mm	2.935													
Work u	ntil failure	Kip∙ft.	13.738	Work until failure per	Kip·ft./ft.	1.717													
work un	itii failure	KN∙m	18.625	unit length	KN·m/m	7.638													
Load @	@ .32 in.	Kips	4.787	Unit load @ .32 in.	Kips/ft.	0.598	cycle	Negativ	e stroke	Positiv	ve stroke	Negativ	e stroke	Positive		Area,	Kip-in.	Unit loa	d, KN/m
(8.13	3 mm)	KN	21.294	(8.13 mm)	KN/m	8.733	initial	in.	Kips	in.	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load @	@ .48 in.	Kips	6.045	Unit load @ .48 in.	Kips/ft.	0.756		0	0	0	0	0	0	0	0	0	0	0	0
(12.1	9 mm)	KN	26.887	(12.19 mm)	KN/m	11.027	1	-0.112	-2.359	0.086	2.434	-2.855	-10.494	2.184	10.825	0.133	0.105	-4.304	4.439
Load @	@ .96 in.	Kips	8.122	Unit load @ .96 in.	Kips/ft.	1.015	7	-0.160	-2.898	0.142	3.262	-4.064	-12.890	3.614	14.511	0.125	0.160	-5.286	5.951
	8 mm)	KN	36.125	(24.38 mm)	KN/m	14.815	14	-0.218	-3.595	0.197	3.833	-5.547	-15.991	5.006	17.048	0.190	0.194	-6.558	6.992
-	@ 1.6 in.	Kips	9.702	Unit load @ 1.6 in.	Kips/ft.	1.213	21	-0.420	-5.585	0.404	5.763	-10.678	-24.843	10.264	25.632	0.927	0.993	-10.188	10.512
	e 1.0 lll. 4 mm)	KIPS	43.154	(40.64 mm)	KN/m	17.698	21	-0.631	-6.837	0.626	6.894	-16.030	-30.410	15.890	30.664	1.309	1.402	-12.471	12.576
,	y factor, μ		5.74	$\zeta_{eq} @ v_{peak}$		0.192	29	-0.840	-7.677	0.838	7.833	-21.344	-34.146	21.278	34.843	1.518	1.562	-14.003	14.289
Ducunty	γ ιασιοι, μ		5.74	Seq ₩ peak		0.192													
							32	-1.454	-9.402	1.429	9.752	-36.937	-41.820	36.302	43.378	5.242	5.201	-17.151	17.790
							35	-2.020	-9.738	2.045	10.340	-51.303	-43.315	51.951	45.993	5.413	6.189	-17.764	18.862
							38	-2.721	-8.906	2.760	10.427	-69.113	-39.615	70.091	46.380	6.537	7.416	-16.246	19.021

-0.575

4.489

2.592

-4.464

41

-113.383

-2.558

114.031

11.530

8.262

11.261

-1.049

Specimen	Redry2	For tota	al length	Specimen Redry2	Per uni	t length	Specimen	Redry2	For total	length									
Redry 2		CUREE	cyclic test	Redry 2	CUREE	cyclic test	Redry 2		CUREE c	yclic test									
Effective w	vall length	96in.	2.44m	Effective wall length	96in.	2.44m	Effective wa	ll length	96in.	2.44m									
Date:	7/13/2011	Time:	11:21	Date: 7/13/2011	Time:	11:21	cycle	avg. disp	lacement	avg.	load	work p	er cycle	cumulat	ive work	cyclic s	stiffness	damping	line
EEEP P	Parameters	units	initial	EEEP Parameters	units	initial	initial	in.	mm	Kips	KN	Kip•ft.	KN∙m	Kip∙ft.	KN∙m	Kip/in.	KN/mm	ratio	number
Peak l	oad, F _{peak}	Kips	9.874	Peak unit load, v _{peak}	Kip/ft.	1.234		0	0	0	0	0	0	0	0		•		13
I Cak I	oad, 1 peak	KN	43.921	reak unit load, v _{peak}	KN/m	18.012	1	0.096	2.427	2.356	10.480	0.020	0.027	0.020	0.027	24.819	4.346	0.168	110
Drift at pe	eak load, Δ_{peak}	in.	2.008	Drift at capacity, Δ_{peak}	in.	2.008	7	0.157	3.976	3.120	13.877	0.037	0.050	0.156	0.211	20.197	3.537	0.146	778
Dint at pe	ak load, Apeak	mm	51.00	Diffe at capacity, Δ_{peak}	mm	51.00	14	0.198	5.020	3.674	16.343	0.055	0.075	0.344	0.467	18.617	3.260	0.145	1556
Vield 1	load, F _{vield}	Kips	8.635	Yield unit load, vvield	Kip/ft.	1.079	21	0.414	10.527	5.584	24.839	0.188	0.254	0.729	0.988	13.471	2.359	0.155	2332
T ICIU I	ioad, I yield	KN	38.406	ricid unit load, vyield	KN/m	15.751	25	0.616	15.658	6.823	30.350	0.320	0.433	1.284	1.741	11.063	1.937	0.145	2777
Drift at vie	eld load, Δ_{vield}	in.	0.500	Drift at yield load, Δ_{vield}	in.	0.500	29	0.833	21.154	7.824	34.801	0.449	0.609	2.086	2.829	9.397	1.646	0.132	3221
Dint at yie	end totad, Agield	mm	12.71	Diffit at yield load, Agield	mm	12.71	32	1.442	36.619	9.585	42.634	1.260	1.708	3.671	4.977	6.646	1.164	0.174	3554
Proporti	ional limit,	Kips	3.950	Proportional limit,	Kip/ft.	0.494	35	2.008	51.003	9.874	43.921	1.752	2.376	6.083	8.247	4.922	0.862	0.169	3887
0.4	4F _{peak}	KN	17.568	0.4v _{peak}	KN/m	7.205	38	2.381	60.485	7.779	34.600	2.826	3.831	9.953	13.494	3.237	0.567	0.287	4221
Drift at p	prop. limit,	in.	0.229	Drift at prop. limit,	in.	0.229	41	2.876	73.047	2.800	12.453	1.810	2.453	13.187	17.879	0.972	0.170	0.429	4555
Δ@0	0.4F _{peak}	mm	5.81	$\Delta @0.4v_{peak}$	mm	5.81													
Failure los	ad or 0.8F _{peak}	Kips	7.899	Unit load at failure or	Kip/ft.	0.987													
I antire loa	ad of 0.01 peak	KN	35.137	0.8v _{peak}	KN/m	14.410													
Drift at fa	ailure, $\Delta_{failure}$	in.	2.464	Drift at failure, $\Delta_{failure}$	in.	2.464													
		mm	62.59	Diffe at failure, Difailure	mm	62.59													
Elastic s	stiffness, K _e	Kip/in.	17.338	Shear modulus, G	Kip/in.	17.338													
@0	.4F _{peak}	KN/mm	3.036	@0.4F _{peak}	KN/mm	3.036													
Work u	ntil failure	Kip∙ft.	9.953	Work until failure per	Kip·ft./ft.	1.244													
WOIK U	intii Tanure	KN∙m	13.494	unit length	KN·m/m	5.534													
Load	@ .32 in.	Kips	4.752	Unit load @ .32 in.	Kips/ft.	0.594	cycle	Negativ	e stroke	Positiv	e stroke	Negativ	e stroke	Positive	e stroke	Area,	Kip-in.	Unit loa	d, KN/m
(8.1	3 mm)	KN	21.138	(8.13 mm)	KN/m	8.669	initial	in.	Kips	in.	Kips	mm	KN	mm	KN	negative	positive	negative	positive
Load	@ .48 in.	Kips	5.985	Unit load @ .48 in.	Kips/ft.	0.748		0	0	0	0	0	0	0	0	0	0	0	0
(12.1	19 mm)	KN	26.619	(12.19 mm)	KN/m	10.917	1	-0.100	-2.106	0.091	2.606	-2.532	-9.366	2.322	11.593	0.105	0.119	-3.841	4.754
Load	@ .96 in.	Kips	8.192	Unit load @ .96 in.	Kips/ft.	1.024	7	-0.170	-2.923	0.143	3.316	-4.328	-13.003	3.625	14.751	0.178	0.152	-5.333	6.049
	38 mm)	KN	36.438	(24.38 mm)	KN/m	14.943	14	-0.201	-3.381	0.195	3.967	-5.098	-15.040	4.943	17.647	0.096	0.189	-6.168	7.237
-	@ 1.6 in.	Kips	9.666	Unit load @ 1.6 in.	Kips/ft.	1.208	21	-0.413	-5.276	0.416	5.893	-10.485	-23.469	10.569	26.210	0.918	1.092	-9.625	10.749
	64 mm)	KIPS	42.993	(40.64 mm)	KIPS/IL. KN/m	17.632	21	-0.413	-6.355	0.622	7.292	-15.524	-28.268	15.791	32.433	1.154	1.355	-11.593	13.301
,	ty factor, μ	1213	4.94	ζ _{eq} @v _{peak}	151 1/111	0.169	23 29	-0.836	-7.360	0.829	8.288	-21.242	-32.736	21.067	36.866	1.544	1.618	-13.425	15.119
Ductint	ιγ ιασιοί, μ		4.94	Seq 🛩 v peak		0.109													
							32	-1.434	-8.952	1.449	10.218	-36.431	-39.819	36.807	45.450	4.877	5.734	-16.330	18.639
							35	-2.035	-9.302	1.981	10.446	-51.694	-41.376	50.312	46.465	5.485	5.494	-16.969	19.055
							38	-3.264	-3.719	3.445	4.359	-82.901	-16.541	87.508	19.388	7.999	10.840	-6.783	7.951

-4.353

-2.768

4.598

1.710

-110.569

-12.312

41

3.533

7.604

3.498

-5.049

3.119

Specimen	redry3	3 For total length Specie		Specimen redry3	Per unit length		Specimen	redry3	For total	l length									
redry3		CUREE cyclic test		redry3	CUREE	CUREE cyclic test red		redry3 CU		CUREE cyclic test									
Effective wall length		96in.	2.44m	Effective wall length	96in.	2.44m	Effective wa	ll length	96in.	2.44m									
Date: 7/27/2011 Time: 09:45		Date: 7/27/2011	Time:	09:45	cycle avg. displ		olacement avg.		. load	d work per cycle		cumulative work		cyclic stiffness		damping	line		
EEEP P	Parameters	units	initial	EEEP Parameters	units	initial	initial	in.	mm	Kips	KN	Kip∙ft.	KN∙m	Kip∙ft.	KN·m	Kip/in.	KN/mm	ratio	number
Peak load, Fp	oad E	Kips	9.976	Peak unit load, v _{peak}	Kip/ft.	1.247		0	0	0	0	0	0	0	0		-		13
I cur i	peak	KN	44.375	r oute unit route, v _{peak}	KN/m	18.198	1	0.095	2.418	2.587	11.509	0.021	0.029	0.021	0.029	28.792	5.042	0.168	108
Drift at peak load, Δ_{peak}	in.	2.065	Drift at capacity, Δ_{peak}	in.	2.065	7	0.153	3.885	3.449	15.343	0.039	0.053	0.163	0.221	23.165	4.057	0.141	778	
	Juk loud, Apeak	mm	52.44	Differ at capacity, Δ_{peak}	mm	52.44	14	0.205	5.203	4.097	18.222	0.057	0.078	0.359	0.486	20.236	3.544	0.131	1554
Yield I	Yield load, F _{vield}	Kips KN	8.828	Yield unit load, v _{vield}	Kip/ft.	1.103	21	0.415	10.536	6.088	27.080	0.194	0.263	0.751	1.018	14.708	2.576	0.147	2330
T TOTA 1	r ford fordd, i yield		39.266	riord unit road, vyien	KN/m	16.103	25	0.619	15.712	7.369	32.778	0.337	0.457	1.314	1.782	11.923	2.088	0.141	2774
Drift at vie	Drift at yield load, Δ_{yield}	in.	0.435	Drift at yield load, Δ_{yield}	in.	0.435	29	0.826	20.989	8.164	36.313	0.461	0.624	2.115	2.867	9.880	1.730	0.130	3218
Dintaryn		mm	11.06	-	mm	11.06	32	1.428	36.271	9.736	43.307	1.304	1.768	3.741	5.072	6.819	1.194	0.179	3551
	ional limit,	Kips	3.991	Proportional limit,	Kip/ft.	0.499	35	2.065	52.442	9.976	44.375	1.826	2.475	6.240	8.459	4.833	0.846	0.169	3885
	4F _{peak}	KN	17.750	0.4v _{peak}	KN/m	7.279	38	2.417	61.384	7.724	34.357	2.781	3.770	10.037	13.608	3.174	0.556	0.282	4219
	prop. limit,	in.	0.197	Drift at prop. limit,	in.	0.197	41	1.383	35.135	1.097	4.880	0.796	1.079	11.807	16.008	-0.591	-0.103	3.173	4552
$\Delta @ 0$	0.4F _{peak}	mm	4.99	$\Delta @0.4v_{peak}$	mm	4.99													
Failure loa	ad or 0.8F _{peak}	Kips	7.981	Unit load at failure or	Kip/ft.	0.998													
	na or or or peak	KN in.	35.500	0.8v _{peak}	KN/m	14.559													
Drift at fa	Drift at failure, Δ_{failure}		2.605	Drift at failure, $\Delta_{failure}$	in.	2.605													
		mm	66.16		mm	66.16													
	stiffness, K _e	Kip/in.	20.538	Shear modulus, G	Kip/in.	20.538													
@0	0.4F _{peak}	KN/mm	3.597	@0.4F _{peak}	KN/mm	3.597													
Work u	intil failure	Kip∙ft.	10.037	Work until failure per	Kip·ft./ft.	1.255													
		KN∙m	13.608	unit length	KN·m/m	5.581				1		1				r		r	
	@ .32 in.	Kips	5.184	Unit load @ .32 in.	Kips/ft.	0.648	cycle	0	e stroke		ve stroke	Negativ	e stroke	Positiv	e stroke	,	Kip-in.	Unit loa	<u>´</u>
	l3 mm)	KN	23.060	(8.13 mm)	KN/m	9.457	initial	in.	Kips	in.	Kips	mm	KN	mm	KN	negative	positive	negative	positive
	@ .48 in.	Kips	6.495	Unit load @ .48 in.	Kips/ft.	0.812		0	0	0	0	0	0	0	0	0	0	0	0
(12.1	19 mm)	KN	28.891	(12.19 mm)	KN/m	11.849	1	-0.116	-2.495	0.074	2.679	-2.951	-11.100	1.885	11.917	0.145	0.099	-4.552	4.887
Load	@ .96 in.	Kips	8.514	Unit load @ .96 in.	Kips/ft.	1.064	7	-0.175	-3.330	0.131	3.568	-4.455	-14.814	3.315	15.871	0.172	0.176	-6.075	6.509
(24.3	38 mm)	KN	37.871	(24.38 mm)	KN/m	15.531	14	-0.224	-3.980	0.185	4.213	-5.700	-17.704	4.707	18.740	0.179	0.213	-7.260	7.685
Load	@ 1.6 in.	Kips	9.802	Unit load @ 1.6 in.	Kips/ft.	1.225	21	-0.431	-5.991	0.399	6.186	-10.940	-26.647	10.132	27.514	1.028	1.111	-10.928	11.284
	64 mm)	KN	43.600	(40.64 mm)	KN/m	17.880	25	-0.634	-7.304	0.603	7.434	-16.109	-32.489	15.316	33.067	1.353	1.390	-13.324	13.561
	ty factor, µ		6.09	ζ _{eq} @v _{peak}		0.169	29	-0.830	-8.019	0.823	8.309	-21.074	-35.668	20.904	36.958	1.498	1.732	-14.628	15.156
Ductin	-, -10:01, p		0.07	Jey - Peak		0.107	32	-1.433	-9.437	1.423	10.036	-36.393	-41.975	36.149	44.639	5.264	5.505	-17.214	18.307
							32	-2.078	-9.437	2.052	10.030	-52.774	-41.973	52.111	46.028	6.140	5.303 6.405	-17.521	18.307
							35 38	-2.078	-9.605	2.052 3.391	6.621	-52.774 -86.581	-42.723	52.111 86.136	46.028 29.452	6.140 7.725	6.405 11.366	-17.521 -3.653	18.876
							30	-3.409	-2.003	3.391	0.021	-80.381	-0.900	80.130	29.452	1.125	11.366	-3.653	12.078

-4.590

41

-0.234

4.522

0.627

-116.576

-1.043

114.869

2.791

1.321

-0.428

4.100

Appendix D: Summary of Cyclic Properties (1 page)

Cyclic test data from restrained SIPs, analyzed following ICC ES AC130 methodology

Wall	Wall	Fastener	ASD Design		ASD Design Deflection, inch		Ultimate Deflection, inch		Peak Load, plf		Section 5.2.2 (2)	Section 5.2.3 ⁽³⁾	Section 5.2.4 ⁽⁴⁾	
Number	Type (length)	Spacing	Center "stud"	Value, plf ⁽¹⁾	(neg)	(pos)	(neg)	(pos)	(neg)	(pos)		Н		
Dry1			7/16" block spline	315	-0.094	0.074	-1.907	2.388	-1,151	1,171	25.6	0.022	3.69	
Dry2	y2 SIP Dry	8d common nail @ 6" oc		315	-0.091	0.066	-2.811	3.101	-1,260	1,263	37.6	0.031	4.00	
Dry3				315	-0.082	0.077	-2.176	2.398	-1,234	1,240	28.8	0.024	3.93	
Redry1		8d common nail @ 6" oc		7/16" block	315	-0.127	0.092	-2.954	3.220	-1,217	1,303	28.3	0.032	4.00
Redry2	SIP Wet/Redry		spline	315	-0.136	0.088	-2.445	2.483	-1,163	1,306	22.0	0.026	3.92	
Redry3			spillie	315	-0.118	0.070	-2.414	2.796	-1,201	1,293	27.8	0.027	3.96	

⁽¹⁾ Underlying assumption from IRC.

⁽²⁾ Ultimate deflection divided by deflection at ASD Design Value, criterion is >= 11

⁽³⁾ Minimum post peak displacement, criterion >= 0.028H

⁽⁴⁾ Ratio of peak strength to assigned ASD design load, criterion is between 2.5 and 5.0.

ICC ES AC130 Analysis based on mean values

Wall	ASD Design	Design	Ultimate	Peak	Section 5.2.2 (2)	Section 5.2.3 ⁽³⁾	Section 5.2.4 (4)
Туре	Value (1)	Defl	Defl	Load		Н	
Dry	315	0.081	2.464	1,220	30.7	0.026	3.87
Redry	315	0.105	2.719	1,247	26.0	0.028	3.96

Appendix E: Photos (2 pages)

SIP wall sitting on top of a 2x6.

Figure E4. Typical ultimate failure mode of top plate coming unattached to wall studs.

Figure E5. Typical failure mode of walls with a combination of nail head pullout, pull-through and	
nail withdrawal from wall perimeter, as well as top	
plate coming unattached to wall studs (Figure E4).	
⊑ <i>ч)</i> .	