Closed Wall Systems: Building with Structural Insulated Panels (SIPs)

Systems-Built Construction 101 9:45 am – 12 noon

NAHB Disclosure

The material in this education session has not been reviewed, approved, or endorsed by the National Association of Home Builders (NAHB). The topics discussed and the materials provided herein are for informational purposes only, are not intended to be an exhaustive presentation of information on a particular subject and should not be treated as such. The speaker or speakers are not acting on behalf of or at the direction of NAHB.

NAHB specifically disclaims any liability, loss or risk, personal or otherwise, which may be incurred as a consequence, directly or indirectly, in the use or application of any of the materials presented in this or any other education session presented as part of the NAHB Association Management Conference.

Meet Your Speakers...

SIPschool www.SIPschool.org Al@SIPschool.org +1-304-876-8494 Al Cobb Structural Insulated Panel Association
www.SIPs.org
Jack@SIPs.org
+1-253-858-7472
Jack Armstrong

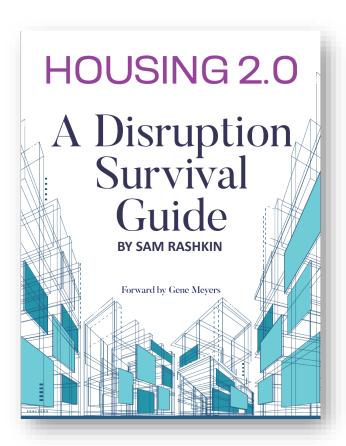
Closed Wall Systems: Building with Structural Insulated Panels

Overview

Understand how SIP building envelopes are quickly and simply designed & assembled to surpass the latest 2021 energy codes to meet high-performance, net-zero energy/low carbon mandates at an affordable price – in most cases at an installed cost lower than traditional construction. Superior comfort, improved indoor air quality & occupant health are all amplified by the extremely low air leakage rates of less than 2 ACH50 down to 0.35 ACH50 putting HERS values of 45 or less and qualifying for Passive House performance within reach using less skilled labor and reduced jobsite waste.

Learning Outcomes

- Understand what a SIP is and how it is flexibly used for single family, multifamily, and light commercial Type 5 construction in both 180 + mph hurricane and high seismic (D,E,F) zones.
- Explore the best practice resource guides and training available to earn Registered and Master SIP Builder Certifications and design your first project confidently.
- Tour the SIP True Value Bid Interactive Tool developed by former U.S. Dept. of Energy & Zero Energy Ready Home Leader, Sam Rashkin, for the Housing 2.0 Industry practitioners that shows how SIP construction and added value is significantly less expensive than traditional high-performance construction methods.

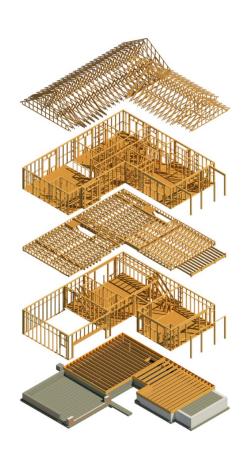


Section Break – mid way 10:45 am

Goal:

Make high-performance housing professionals UX leaders including:

- 420+ pages
- 150+ UX best practices
- 100's graphics
- 360+ citations
- 7 guest expert essays


Housing 2.0 Website:

https://www.greenbuildermedia.com/housing-2.0

Why 7 steps instead of 3?

Benefits:

- Speed
- Quality
- Accuracy
- Efficiency
- Waste Reduction
- System Integration
- Machine Learning
- Automated BOM
- Automated Scheduling

150-Year-Old Framing

Typical Framing

Build Better with Total Protection Panels

On-time Protection:

- Less Construction Time
- Less Defects

Live Better Protection:

- Stronger Construction
- Dimensional Accuracy
- Assured Comfort
- Reduced Noise
- Reduced Pests
- · Storm Resistance
- Wildfire Resistant

Affordability Protection:

- Lower Cost
- Ultra-Low Energy Bills
- Reduced Maintenance

HIGH PERFORMANCE HOME SUMMIT 2022

SEPT 20 - 22 | SCOTTSDALE, AZ

HIGH PERFORMANCE HOME ENCLOSURES: FASTER, BETTER, & CHEAPER

Sam Rashkin and Jack Armstrong

History of SIPs

Ancient Egyptians
Frank Lloyd Wright – 1930
Forest Product Labs-1935
Alden B. Dow – 1950
Timber Framing
SIPA- 1980
OSB Jumbo skins
CNC fabrication

Anatomy of a SIP

Rigid Insulation

Expanded Polystyrene (EPS) or Polyurethane (PU) Or Extruded Polystyrene (XPS)

Structural Adhesive

Concrete

Facings

Metal

OSB

Floors

 A Superior Building Product for Floors

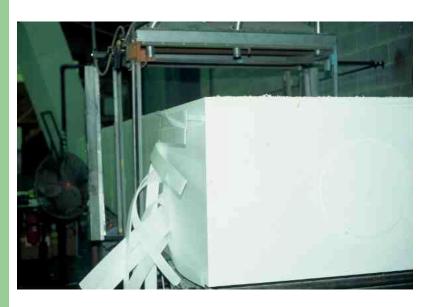
- Floors that are preinsulated
- Efficient over unconditioned garages
- Floors that will not squeak

Walls

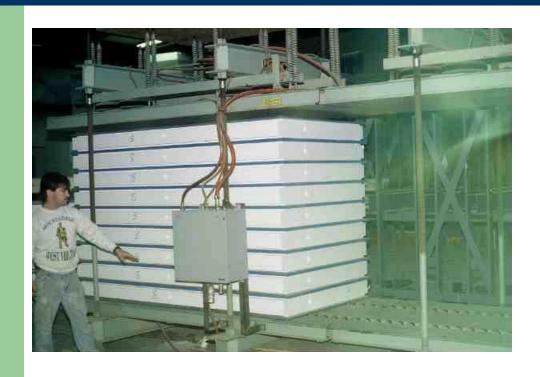
- A Superior Building Product for Walls:
 - Fast
 - Control over materials and labor
 - Solves problems prior to construction
 - Straighter and truer walls
 - Tighter construction

Roofs

- A Superior Building Product for Roofs
 - Cathedral and vaulted ceilings
 - Much faster dry-in
 - Shed roof designs
 - Open vaulted hip roofs
 - Greater spans
 - Pre-insulated
 - Engineered



Manufacturing (EPS)



Manufacturing (EPS)

Lamination

Pneumatic Pod Press

Other press options include:

- Vacuum
- •Hydraulic
- •Nip Roller

Urethane manufacturing

Urethane manufacturing

Nozzle injecting two-part foam inside the press

Urethane manufacturing

EPS vs. PU vs. XPS

- R-Value
- Compressive Strength
- Perm ratings
- Fire Resistance
- Available sizes and thickness
- Butt joint (EPS)
- Bug proof

4 by VS Jumbo

- Sizes
- Fit to design
- Right for site
- Material Handling
- Philosophy of a tight structure
- # of lifts

OSB vs. Metal vs. Cement

- moisture
- Ease of assembly
- Field modifications
- Finish material
- Fire
- Termites
- Size of panel
- Weight of panel

Blank SIPs

- Waste
- Inefficient
- Design concerns
- Messy jobsite
- Time
- Tool investment
- Flexible to site conditions

Pre-cut SIPs

- Cost
- Lead time
- Panel layout drawings
- Allocation drawings
- Loading/ shipping concerns

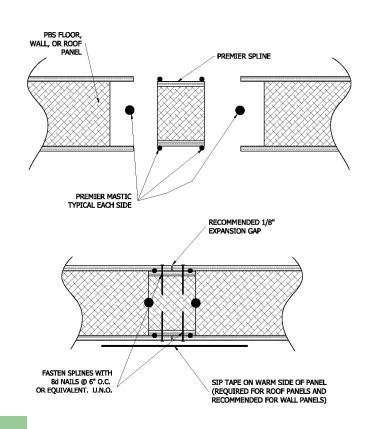
Ready to Assemble

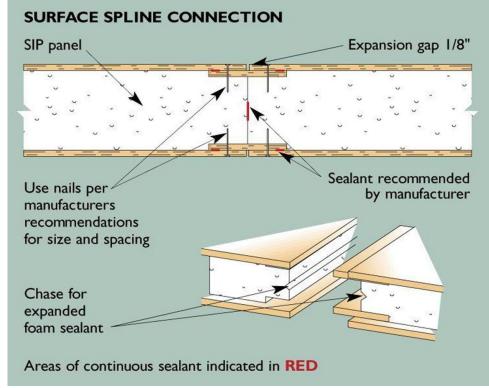
- Edge treatment
- Pre-cut lumber
- Pre-install lumber
- Pre-assemble components

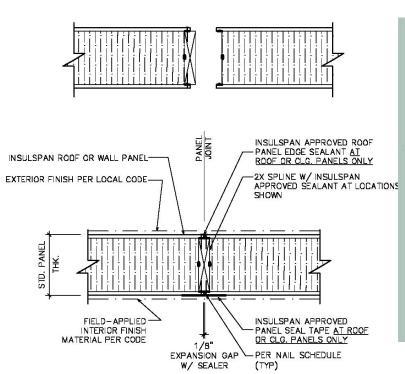
Automation vs. Hand Cutting

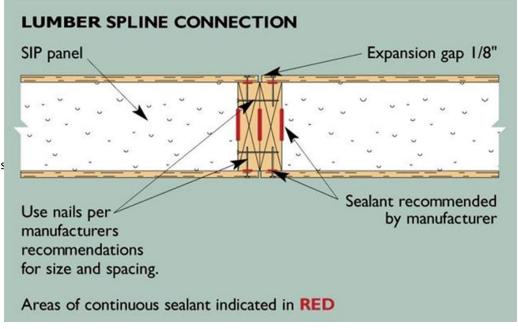
Automated Cutting (CNC)

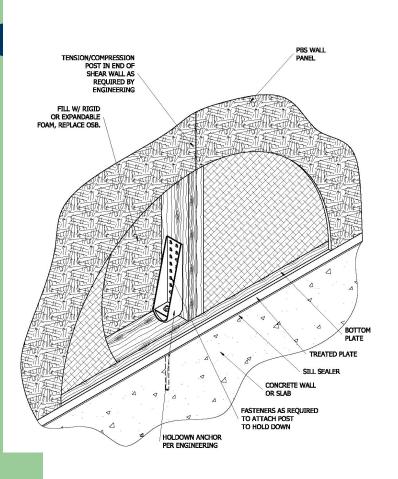
Stiles

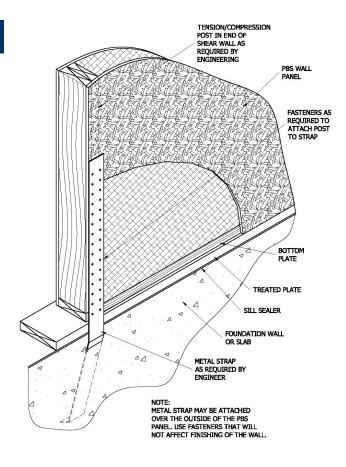

Hundegger

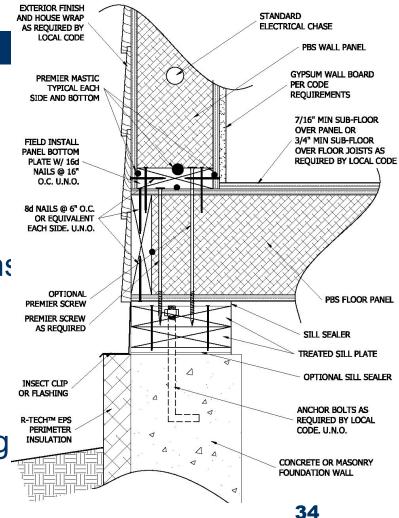


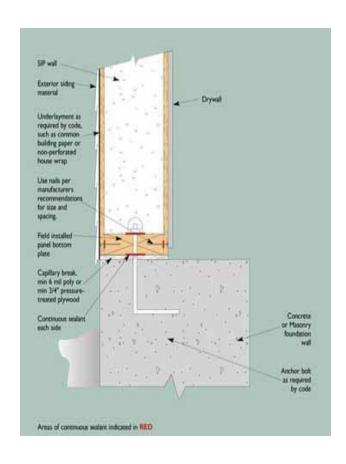


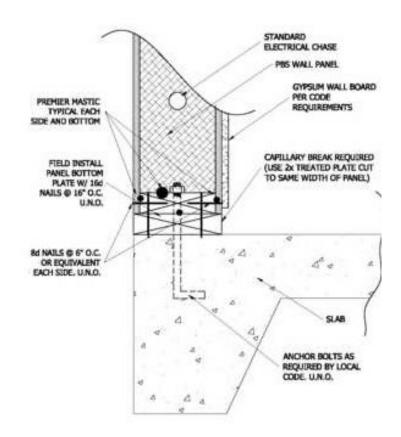

OSB/Plywood Spline Connection



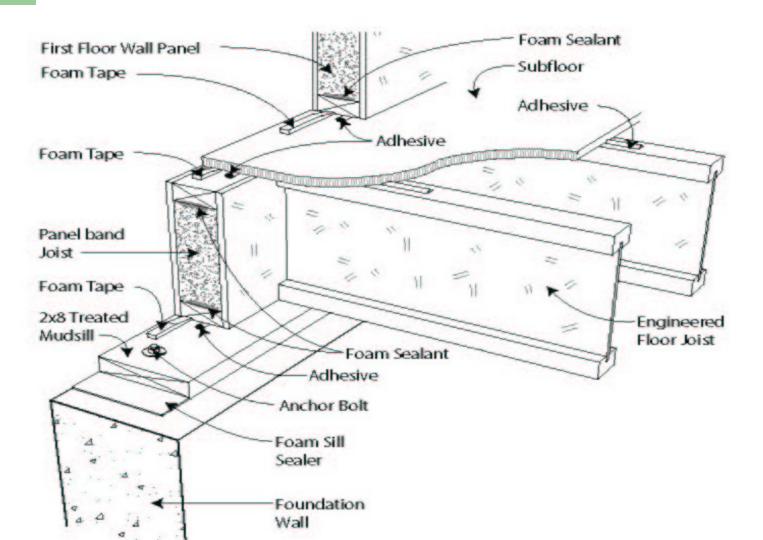

Lumber/EWP Spline Connection


Hold Down Connections

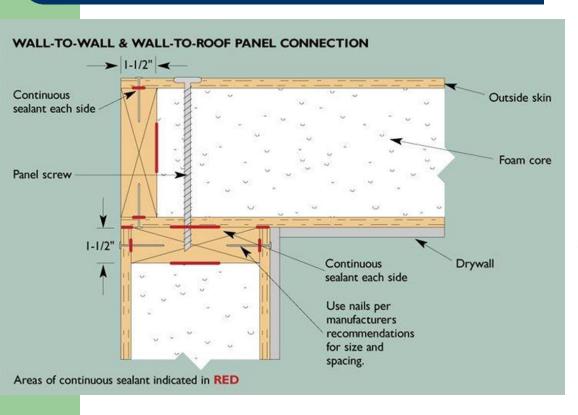


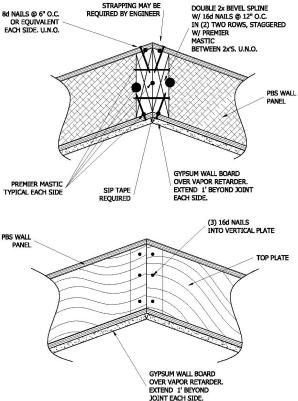

Floor SIPs

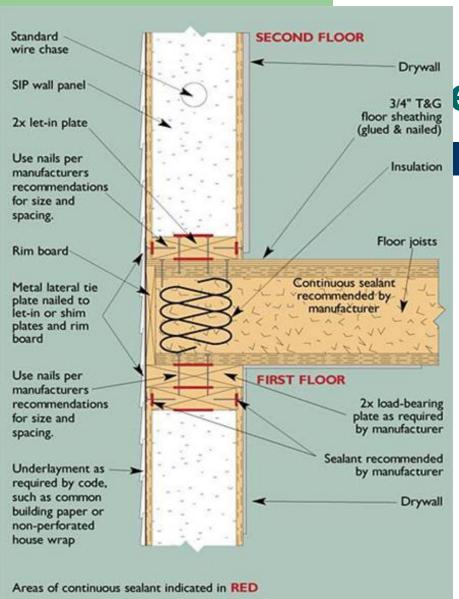
- Span determines thickness
- Substructure/girder system
- Foundation connections
- Second layer of sheathing
- Utility runs
- Proper weather sealing

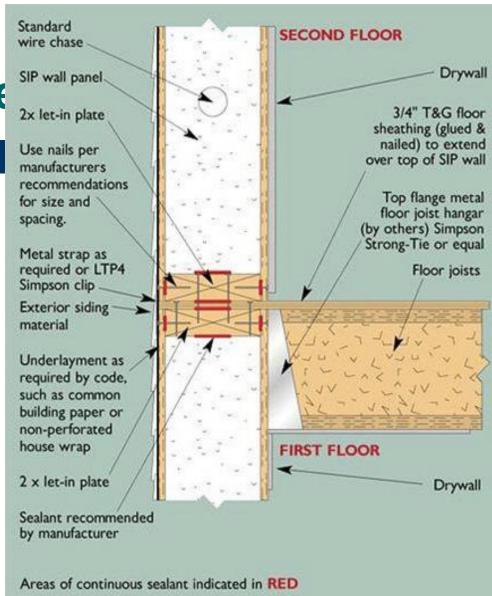


Wall to Floor Connection

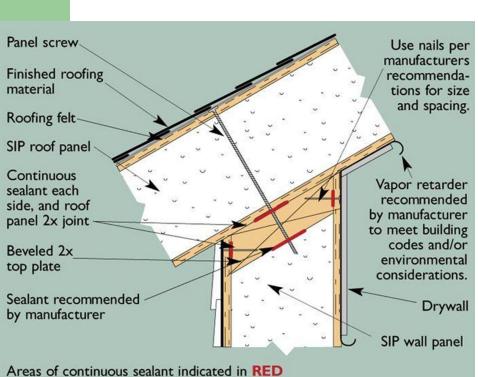




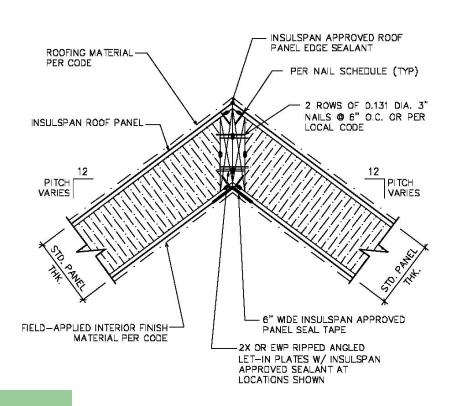

Insulated Rim SIP

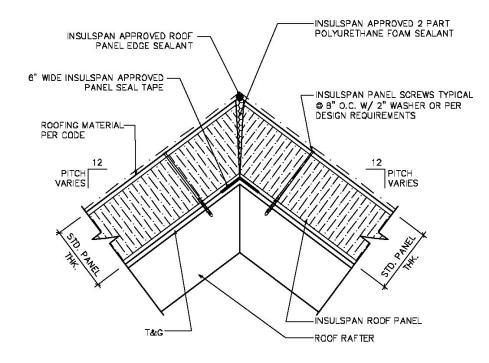


Wall Corner Connections



Bevel Cut Top of Wall




Roof SIP Support

- Single Ridge Beam
- Cantilevered Ridges
- Purlin/Mid-span
- Bearing Walls
- Timber Rafters
- Timber Trusses
- Plated Trusses

Ridge Details

Installation Basics

- Crew Size
- Tools
- Training

Tools of the Trade

Equipment Requirements

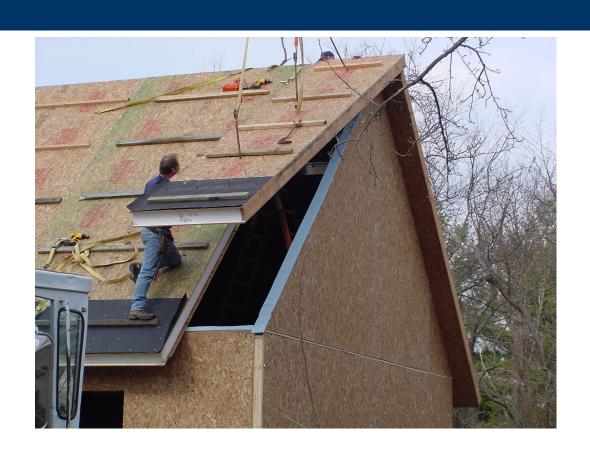
- Crane
- Forklift
- Hand-Set

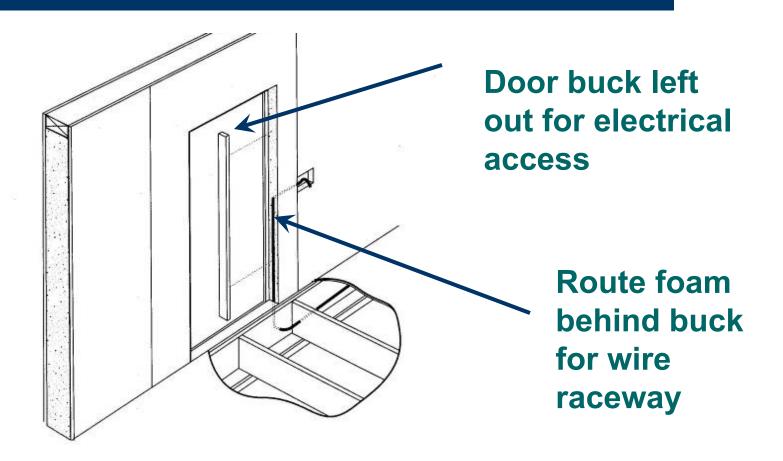
Site management

Rigging Wall Panels

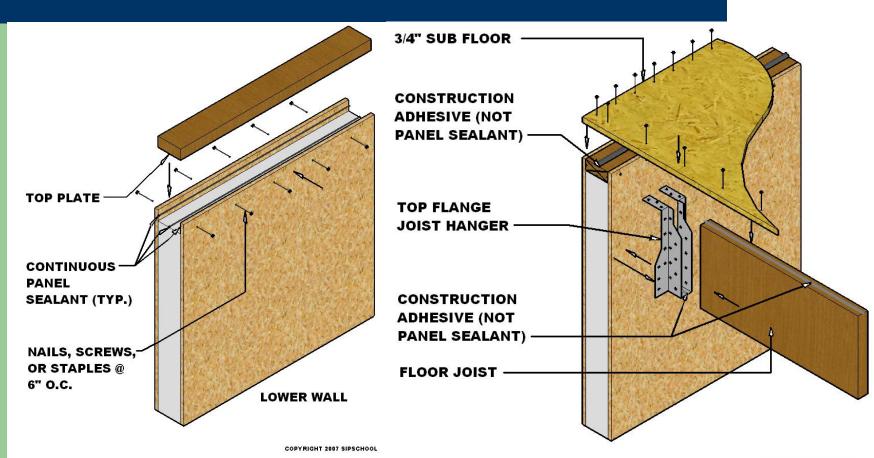
Pre-assembly

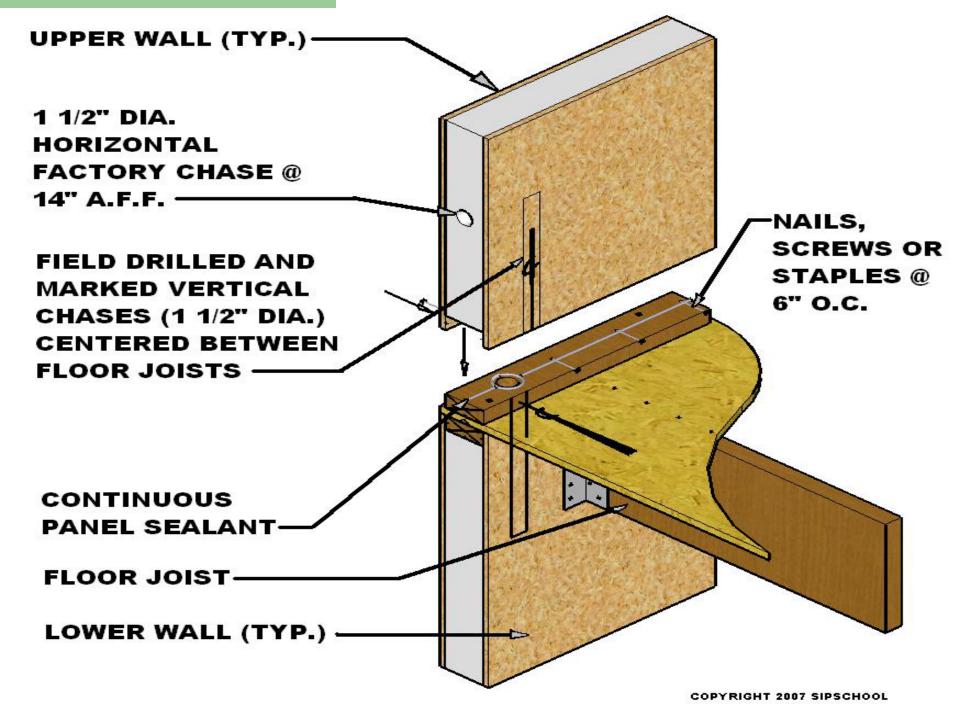
Pre-assembly

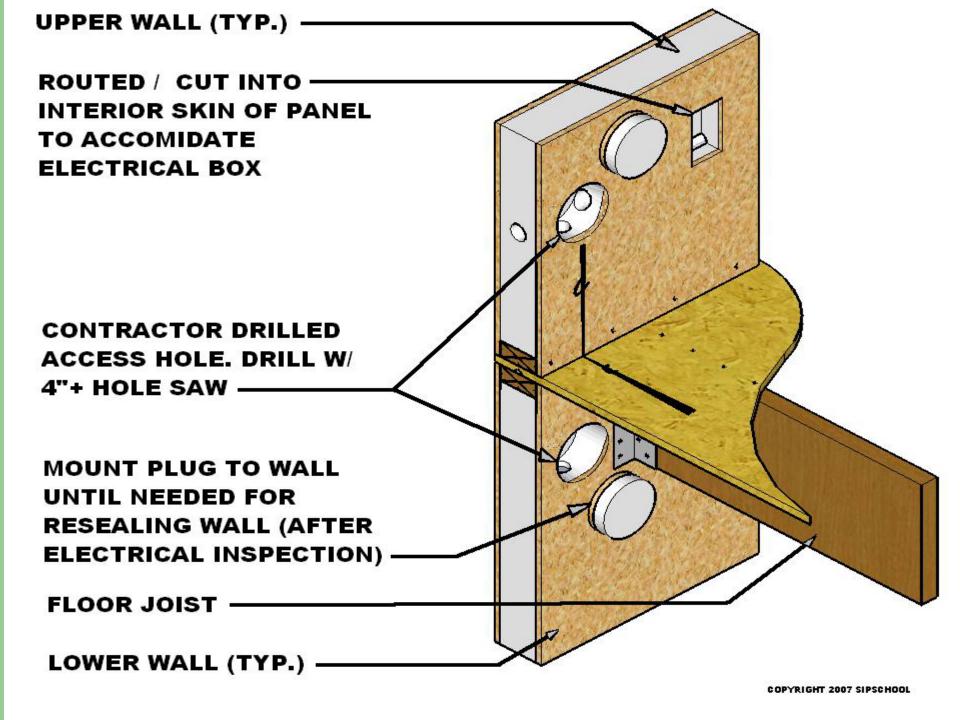


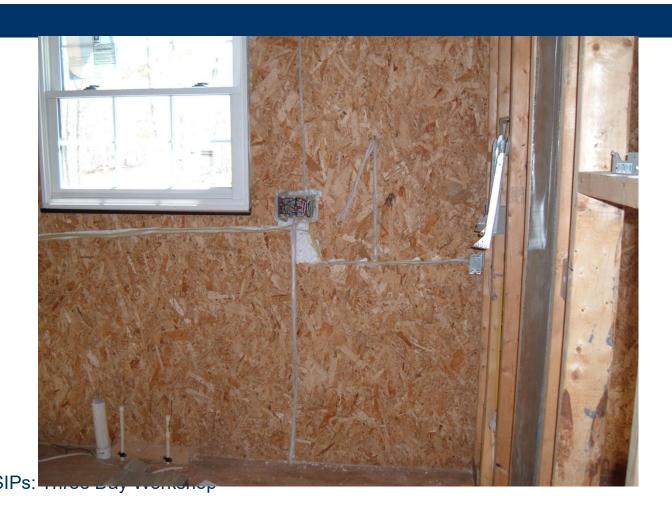


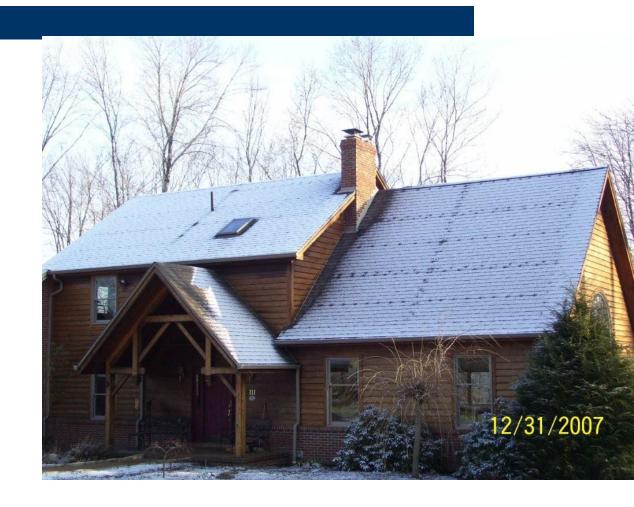
Electrical



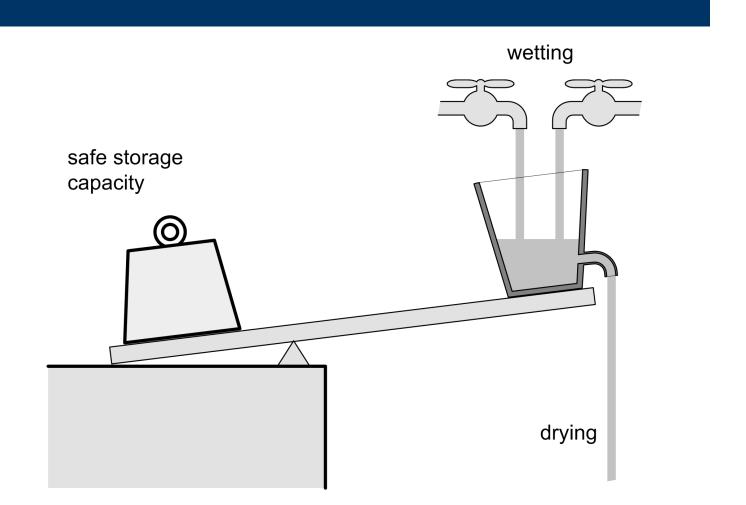



SIPs: Three Day Workshop


Electrical between floors


No Sparky- Bad Boy

71


Roof Venting

- Cold roof vs.Hot Roof
- Dry roof vs.Wet Roof

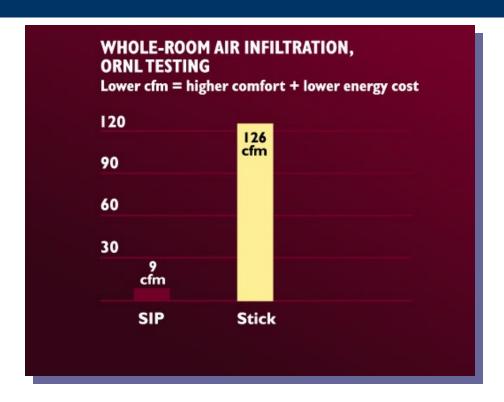
Wetting Vs. Drying

Diagonal lath under metal

Back-ventilating

Shingle ridging

- Heat
- Moisture
- Substrate movement



Philosophy of a Tight Structure

- Tight Structures Reduce
 - Drafts
 - Noise
 - Dust
 - Outdoor air pollutants
- Improperly Ventilated Structures Lead to
 - Poor Indoor Air Quality (IAQ)
 - Moisture Problems
 - Mold
 - Occupant Illness

Oak Ridge National Laboratory Studies

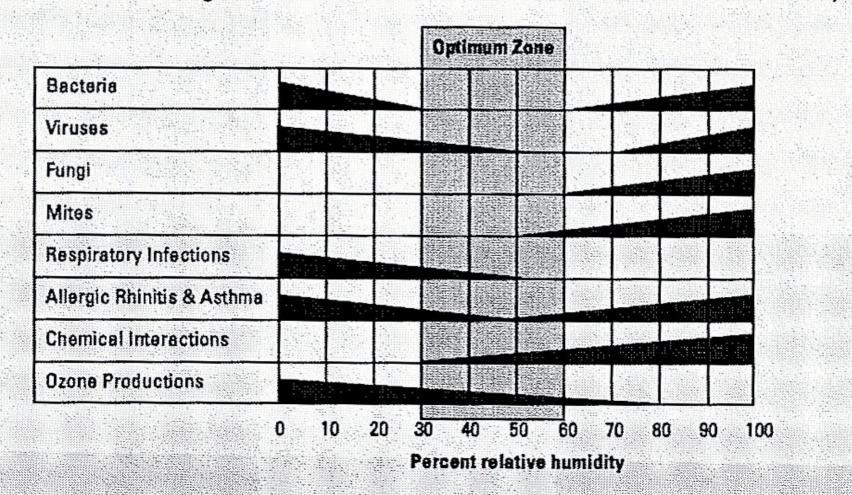
"SIP test room is 15 times tighter"

2 part foaming

- Froth Pak
- Fomo
- Temperature sensitive
- Off ratio problems

Single component foaming

- Requires moisture to cure
- Inexpensive
- Fills 1" max gaps


HVAC Analysis

- Proper Equipment Sizing
 - Prevents short-cycling
 - Contributes to a durable structure
 - Occupant health
 - Affordable to operate
- BTU Requirements
 - Heating and cooling
- Room by Room Air Distribution
- Low infiltration vs. high R-value

HVAC Design

- Duct leakage
- Equipment in conditioned space
- Supply duct location
- Ventilation (make-up air)
 - Purposeful
 - Introduce "fresh" outdoor air through return ducts to be filtered/conditioned prior to delivery
 - Remove polluted air with kitchen and bathroom fans controlled by humidistats

Optimum relative humidity range to minimize harmful contaminants (a decrease in bar height indicates a decrease in effect for each of the items)

Source: ASHRAE, Adapted from Sterling et al., 1985

Data released by the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) demonstrates that keeping relative humidity in the optimum humidity zone limits the effects of many unwanted conditions.

Blower Door & Duct Blast Test

HRV vs. ERV

Heat recovery ventilator Recovers heat

Energy recovery ventilator Recovers moisture via desiccant wheel

How do SIPs compare in cost to Stick Framing?

- More
- Less
- Same
- All of the above

What is the performance standard?

- Energy Performance Standard
- Less than MEC
- MEC
- Energy Star 30%>MEC
- Energy Star Plus 50%>MEC
- Zero Energy Buildings ZEB

Communicating HPH Innovation: SIPA True Cost Bidding Tool

Still doing it the OLD way?

SIPs Innovation: Effectively Translate Value

150-Year-Old Framing

Typical Framing

Build Better with Total Protection Panels

On-time Protection:

- Less Construction Time
- Less Defects

Live Better Protection:

- Stronger Construction
- Dimensional Accuracy
- Assured Comfort
- Reduced Noise
- Reduced Pests
- · Storm Resistance
- Wildfire Resistant

Affordability Protection:

- Lower Cost
- Ultra-Low Energy Bills
- Reduced Maintenance

SIPs True Cost Bidding Tool

Cost Assumptions:	Metrics:	Source
Carrying Cost per day of construction	\$ 400	Cost of Quality, Glenn Cottrell w/IBACOS - \$500 - \$800/day
Percent Cost Savings Installing Drywall w/SIPS	2%	Estimate
Pecent Cost Savings Installing Cabinets w/SIPs	1%	Estimate
Percent Cost Savings Installing Trim w/SIPS	1%	Estimate
Framing Waste in # Dumpsters Per 1,000 Sq. ft.	2.0	Cost of Quality, Glenn Cottrell w/IBACOS - \$500 - \$800/day
SIPs Waste in # Dumpsters Per 1,000 Sq. ft.	0.67	SIPA Meeting
Cost Per Dumpster	\$ 500	Cost of Quality, Glenn Cottrell w/IBACOS - \$500 - \$800/day
Cost of Schematics for Optimizing MEP with SIPs	\$ 1,000	

SIPs Added Value Assumptions:	Metrics:	Source
Base Price of Home	\$ 450,000	Builder
Conditioned Square Feet of Home	2000	Builder
Retail Cost per Sq. Ft. Above-Grade Condtioned space	\$ 250	Builder
Retail Cost per Sq. Ft. Below-Grade Condtioned space	\$ 130	Builder
Additional Conditioned Square Feet with Thinner Walls	25	Take-Off
Sq. Ft. of SIP Attic Traded Off for Basement	0	Take-Off
Additional Conditioned Square Feet with SIP Attic	0	Take-Off
Annual Home Insurance Cost	\$ 1,200	Insurance Company

Summary: SIPs Savings/Value vs.	Conventional	Framing
Cost Savings	Added Value	Total
\$ 13,175	\$ 13,000	\$ 26,175

This cost comparison is based on an actual bid for SIPs and estimated costs for conventional framing based on standard cost data available. Work with your SIPs sales rep to integrate actual bids for conventional framing to get a more precise comparison for your project.

Stairs	\$950	\$950		1 1		Higher Appraisals to Base Price	\$ 450,000)
Attic Venting	\$750	\$750				Reduced Home Insurance Annual Insurance Cost	\$ 1,200)
Concrete Foundation - Material and Labor	\$12,000	\$12,000				Additional Square Footage with Thinner Walls	25	
						Sq. Ft. of SIP Attic Traded Off for Basement	0	Т
Insulation	\$7,304	\$0.00	4.0	0.0		Additional Conditioned Space with SIP Attic	0	Т
Wall - Cavity	\$7,304	\$0				45 L Tax Credit		
Wall - Rigid	\$0	\$0				Utility Rebate		
Attic Ceiling	\$0	\$0				30-year Energy Savings		
Band Joists	\$0	\$0						
Air Flow Control	\$2,750	\$1,350	3.0	1.0				
Air Barriers	\$1,000	\$700						
At- CIt	Č1 F00	¢400		1				

Download copy at: https://www.sips.org/publications

SIPs True Cost Bidding Tool

Cost Assumptions:	Metrics:	Source
Carrying Cost per day of construction	\$ 400	Cost of Quality, Glenn Cottrell w/IBACOS - \$500 - \$800/day
Percent Cost Savings Installing Drywall w/SIPS	2%	Estimate
Pecent Cost Savings Installing Cabinets w/SIPs	1%	Estimate
Percent Cost Savings Installing Trim w/SIPS	1%	Estimate
Framing Waste in # Dumpsters Per 1,000 Sq. ft.	2.0	Cost of Quality, Glenn Cottrell w/IBACOS - \$500 - \$800/day
SIPs Waste in # Dumpsters Per 1,000 Sq. ft.	0.67	SIPA Meeting
Cost Per Dumpster	\$ 500	Cost of Quality, Glenn Cottrell w/IBACOS - \$500 - \$800/day
Cost of Schematics for Optimizing MEP with SIPs	\$ 1,000	
HVAC Cost Difference for SIPs vs. Conventional Framing	\$0	Assume "\$0" but Enter a Cost from Builder
Electric Cost Difference for SIPs vs. Conventional Framing	\$0	Assume "\$0" but Enter a Cost from Builder
Plumbing Cost Difference for SIPs vs. Conventional Framing	-\$500	Assume "-\$1,000" with Optimized Schmatics, but Enter Builder

SIPs Waste in # Dumpsters Per 1,000 Sq. ft.	0.67	SIPA Meeting				
Cost Per Dumpster	\$ 500	Cost of Quality, G	ilenn Cottrell w/IBA	ACOS - \$500 - \$80	00/day	
Cost of Schematics for Optimizing MEP with SIPs	\$ 1,000					
C Cost Difference for SIPs vs. Conventional Framing	\$0	Assume "\$0" but	Enter a Cost from E	Builder		
ic Cost Difference for SIPs vs. Conventional Framing	\$0	Assume "\$0" but	Enter a Cost from E	Builder		
ng Cost Difference for SIPs vs. Conventional Framing	-\$500	Assume "-\$1,000	with Optimized So	hmatics, but Ent	er Builder Cost	Value
Application: SIP Walls Only, Base	ement	Co	osts	# D	ays	
Scope of Work		Framing	SIPs	Framing	SIPs	

Application: SIP Walls Only, Basement	Co	osts	# Days		
Scope of Work	Framing	SIPs	Framing	SIPs	
TOTAL	\$182,065	\$168,890	31.0	14.9	
Structure	\$120,811	\$129,947	12.0	5.0	
SIP Panels - Material and Labor	\$0	\$34,121			
Framing - Material	\$46,756	\$26,271			
Framing - Labor	\$20,050	\$15,550			
Floor Framing/Trusses - Material	\$6,000	\$6,000			
Raised-Heel Roof Trusses - Material	\$8,400	\$8,400			
Beams	\$4,981	\$4,981			
Exterior Trim - Materials	\$13,524	\$13,524			
Exterior Trim - Labor	\$7,400	\$7,400			
Stairs	\$950	\$950			
Attic Venting	\$750	\$750			
Concrete Foundation - Material and Labor	\$12,000	\$12,000			
Insulation	\$7,304	\$0.00	4.0	0.0	
Wall - Cavity	\$7,304	\$0.00	4.0	0.0	
Wall - Rigid	\$7,304	\$0			
Attic Ceiling	\$0	\$0			
Band Joists	\$0	\$0			
band Joists	20	Şū			
Air Flow Control	\$2,750	\$1,350	3.0	1.0	
Air Barriers	\$1,000	\$700			
Air Scaling	\$1 SAN	¢4nn			

SIPs Added Value Assumptions:	Metrics:	Source
Base Price of Home	\$ 450,000	Builder
Conditioned Square Feet of Home	2000	Builder
Retail Cost per Sq. Ft. Above-Grade Condtioned space	\$ 250	Builder
Retail Cost per Sq. Ft. Below-Grade Condtioned space	\$ 130	Builder
Additional Conditioned Square Feet with Thinner Walls	25	Take-Off
Sq. Ft. of SIP Attic Traded Off for Basement	0	Take-Off
Additional Conditioned Square Feet with SIP Attic	0	Take-Off
Annual Home Insurance Cost	\$ 1,200	Insurance Company
Discounted Home Insurance with SIPS (%)	0%	Insurance Company
Higher Appraisal Value (%)	0.0%	Al Cobb Study
lue of Greater Resilience (e.g., Impact, Wind, Earthquake) (%)	1.0%	Estimate
Value of Greater Strength/Dimensional Accuracy (%)	0.5%	Estimate
45 L Tax Credit	\$ -	IRS Language
Utility Rebate	\$ -	Local Utility where available
30-year Energy Savings (from HERS report x 0.7)	\$ -	HERS Report x 0.7 correction for 2006 IECC baseline

NA-4-1--- C-----

Summary: SIPs Savings/Value vs. Conventional Framing						
	Cost Savings	Add	ded Value		Total	
\$	13,175	\$	13,000	\$	26,175	

This cost comparison is based on an actual bid for SIPs and estimated costs for conventional framing based on standard cost data available. Work with your SIPs sales rep to integrate actual bids for conventional framing to get a more precise comparison for your project.

SIPs Improved User Experience		Metric		Value
Total Added Value	Total Added Value			
Stronger/More Dimensionally Accurate Enclosure	\$	450,000		\$2,250
Greater Resilience to Fire, Wind, Impact, Pests	\$	450,000		\$4,500
Higher Appraisals to Base Price	\$	450,000		\$0
Reduced Home Insurance Annual Insurance Cost	\$	1,200		\$0
Additional Square Footage with Thinner Walls		25		\$6,250
Sq. Ft. of SIP Attic Traded Off for Basement		0		\$0
Additional Conditioned Space with SIP Attic		0		\$0
45 L Tax Credit				\$0
Utility Rebate				\$0
30-year Energy Savings				\$0

SIPA as your Resource

- The Industry Association since 1990
- Experts & technical standards
- Education, training & credentials
- Project showcases (over 600)

Introduction & Deep-dive Tools

✓ SIP Design Consideration and SIP Builder Need to Know guides & checklists

✓ 8 of 10 'Deep Dive' SIP Best Practices completed

Education & Master Builders

- ✓ Entire 10 video series remastered for high-def
- ✓ All credentialled for AIA CEU HSW credits
- ✓ Available at SIPs.org & YouTube and...
- ✓ EEBA & Hi Performance Insulation Pros. hosting

Online @ www.SIPs.org

¡ items ∨

WHAT ARE SIPS V

SIP PROJECTS V

FIND EXPERTS V

NEWS / EVENTS V

RESOURCES ~

DESIGN PROFESSIONALS BUILDERS OWNERS

Member Login

GET STARTED WITH SIPS. CLICK BELOW.

Innovate Sustainably

Reduce Labor Costs

Breathe Better, Live Healthy

Questions, Concerns, Comments?

OLUTIONS Building Systems Housing Summit

